Line 1: |
Line 1: |
− | {{ToBeEdited}}Most historians of pre-British India agree that India of that time was not only an agricultural, but also an industrial society. And a survey of Indian technologies cannot be complete without some discussion of textiles, the great industrial enterprise of pre-British India. Up to 1800, India was the world’s leading producer and exporter of textiles. This production was almost entirely based on techniques that could be operated at the level of the individual or the family. Spinning of yarn was an activity in which perhaps whole of India participated. According to an observer from Manchester, Arno Pearse, who in 1930 visited India to study its cotton industry, there were probably 5 crore spinning wheels (charkhas) intermittently at work even then. And this simple small wheel was so efficient that till the early decades of the 19th century, a widowed mother could still maintain a whole family in reasonable manner by spinning on the charkha for a few hours a day. Weaving was a relatively more specialised activity. However, the number of those belonging to the weaver castes was smaller in comparison to those from the cultivating castes. Early 19th century data for certain districts of South India indicate that each district had around 20,000 looms. Arno Pearse in 1930 estimated the number of handlooms operating in India to be in the vicinity of 20 lakhs.<ref name=":1" />
| + | Most historians of pre-British India agree that India of that time was not only an agricultural, but also an industrial society. And a survey of Indian technologies cannot be complete without some discussion of textiles, the great industrial enterprise of pre-British India. Up to 1800, India was the world’s leading producer and exporter of textiles. This production was almost entirely based on techniques that could be operated at the level of the individual or the family. Spinning of yarn was an activity in which perhaps whole of India participated. According to an observer from Manchester, Arno Pearse, who in 1930 visited India to study its cotton industry, there were probably 5 crore spinning wheels (charkhas) intermittently at work even then. And this simple small wheel was so efficient that till the early decades of the 19th century, a widowed mother could still maintain a whole family in reasonable manner by spinning on the charkha for a few hours a day. Weaving was a relatively more specialised activity. However, the number of those belonging to the weaver castes was smaller in comparison to those from the cultivating castes. Early 19th century data for certain districts of South India indicate that each district had around 20,000 looms. Arno Pearse in 1930 estimated the number of handlooms operating in India to be in the vicinity of 20 lakhs.<ref name=":1" /> |
− | | |
| == परिचयः ॥ Introduction == | | == परिचयः ॥ Introduction == |
| The term textile is derived from the Latin word 'texere' which means, 'to weave'. It refers to woven (i.e. interlaced warp-weft) fabrics. And 'fabric' is a generic term for all fibrous constructions.<ref name=":0">A. K. Bag (1997), [https://archive.org/details/in.ernet.dli.2015.205662/page/n395/mode/2up History of Technology in India] (Vol.I), New Delhi: Indian National Science Academy.</ref> | | The term textile is derived from the Latin word 'texere' which means, 'to weave'. It refers to woven (i.e. interlaced warp-weft) fabrics. And 'fabric' is a generic term for all fibrous constructions.<ref name=":0">A. K. Bag (1997), [https://archive.org/details/in.ernet.dli.2015.205662/page/n395/mode/2up History of Technology in India] (Vol.I), New Delhi: Indian National Science Academy.</ref> |
Line 16: |
Line 15: |
| # Loom structure.<ref name=":0" /> | | # Loom structure.<ref name=":0" /> |
| == Fibre == | | == Fibre == |
− | The Yajnavalkya Smrti and the Mahabharata are known to mention bark cloth worn by ascetics known as Valkala. Both these texts refer to a bark cloth, potti in usage in the districts of Ganjam in Orissa and Vishakhapatnam in Andhra Pradesh. However, it is not clear if this has been confused with the woven bast fibre, pata (पाट) which, according to Professor R.S. Singh is derived from a plant of the Malvaceae family, the fabric being called Patu (पाटु). | + | The [[Yajnavalkya Smrti (याज्ञवल्क्यस्मृतिः)|Yajnavalkya Smrti]] and the [[Mahabharata (महाभारतम्)|Mahabharata]] are known to mention bark cloth worn by ascetics known as Valkala. Both these texts refer to a bark cloth, potti in usage in the districts of Ganjam in Orissa and Vishakhapatnam in Andhra Pradesh. However, it is not clear if this has been confused with the woven bast fibre, pata (पाट) which, according to Professor R.S. Singh is derived from a plant of the Malvaceae family, the fabric being called Patu (पाटु). |
| | | |
| This confusion is a result of a common terminology, pat/patta/putta for silk as well as jute. B. N. Singh has demonstrated that patta can be taken as a reference to a cloth woven from a variety of bast fibres. Initially it was derived from plants of the Malvaceae, shifting later to the Hibiscus cannibinus grouping. However, after the 4th century A. D. the term patta was imbued with the connotation of silk. It is possible that the Bengali term pat for Jute was coined because of the glossy appearance of the fibre. | | This confusion is a result of a common terminology, pat/patta/putta for silk as well as jute. B. N. Singh has demonstrated that patta can be taken as a reference to a cloth woven from a variety of bast fibres. Initially it was derived from plants of the Malvaceae, shifting later to the Hibiscus cannibinus grouping. However, after the 4th century A. D. the term patta was imbued with the connotation of silk. It is possible that the Bengali term pat for Jute was coined because of the glossy appearance of the fibre. |
Line 38: |
Line 37: |
| | | |
| ==== Flax Fibres ==== | | ==== Flax Fibres ==== |
− | Linen, referred to as Kshauma in early texts, is obtained from the plant Linum usimtissimum. The plant is called Uma (उमा) in the Charaka Samhita while Panini uses the term Kshuma and atasi. Uma and Kshuma had the connotation of linen while atasi had that of linseed oil. Linum usitatissimum was not indigenous to India and in antiquity it was cultivated in Egypt, Europe and Northern India. The attempt to popularise that plant for its flax fibre failed in this country, but as a source of linseed oil it was extensively cultivated. | + | Linen, referred to as Kshauma in early texts, is obtained from the plant Linum usimtissimum. The plant is called Uma (उमा) in the [[Charaka Samhita (चरक संहिता)|Charaka Samhita]] while Panini uses the term Kshuma and atasi. Uma and Kshuma had the connotation of linen while atasi had that of linseed oil. Linum usitatissimum was not indigenous to India and in antiquity it was cultivated in Egypt, Europe and Northern India. The attempt to popularise that plant for its flax fibre failed in this country, but as a source of linseed oil it was extensively cultivated. |
| | | |
| Flax fibres are long, lustrous, strong, and can stand up to high tension. They are smooth, hard faced, inelastic and resistant to abrasion. They are also good heat conductors and readily absorb water. | | Flax fibres are long, lustrous, strong, and can stand up to high tension. They are smooth, hard faced, inelastic and resistant to abrasion. They are also good heat conductors and readily absorb water. |
Line 77: |
Line 76: |
| In Darjeeling, Dehra Dun and other places in North India, a related plant, Boehmeria puya Royle, was grown, puya fabric being woven from this fibre. While, the fibres derived from Boehmeria salicifolia and' Boehmeria utilis were used for making rope. These references to ramie as identified above, make it clear that the woven material could not have been of very high quality. | | In Darjeeling, Dehra Dun and other places in North India, a related plant, Boehmeria puya Royle, was grown, puya fabric being woven from this fibre. While, the fibres derived from Boehmeria salicifolia and' Boehmeria utilis were used for making rope. These references to ramie as identified above, make it clear that the woven material could not have been of very high quality. |
| | | |
− | However, in the Ramayana, ramie or nettle cloth receives high praise for its fineness and beauty. Samples of ramie in Japanese collections are also of a high quality. The above reference may be taken to imply Urtica heterophylla, the Horoo surat of Assam, the Nilgiri nettle of South India and herpah of Bhutan. This plant, the bark of which yields an abundance of fine, white glossy silk-like fibres, grows in Burma, Assam, the Himalayan foothills up to Dehra Dun, Southern Konkan, Karnataka and coastal Kerala. The nettle cloth mentioned in the Ramayana may have been derived from the fibre of this plant. Varrier Elwin noted that among the tribal groups of the North-East, the Monpas, Sherdukpens and Idu Mishmi wove fibres derived from Boehmeria nivea and other of nettle origin into a cloth which was made into jackets. These were so strong and stiff that they could serve as a kind of armour. | + | However, in the [[Ramayana (रामायणम्)|Ramayana]], ramie or nettle cloth receives high praise for its fineness and beauty. Samples of ramie in Japanese collections are also of a high quality. The above reference may be taken to imply Urtica heterophylla, the Horoo surat of Assam, the Nilgiri nettle of South India and herpah of Bhutan. This plant, the bark of which yields an abundance of fine, white glossy silk-like fibres, grows in Burma, Assam, the Himalayan foothills up to Dehra Dun, Southern Konkan, Karnataka and coastal Kerala. The nettle cloth mentioned in the Ramayana may have been derived from the fibre of this plant. Varrier Elwin noted that among the tribal groups of the North-East, the Monpas, Sherdukpens and Idu Mishmi wove fibres derived from Boehmeria nivea and other of nettle origin into a cloth which was made into jackets. These were so strong and stiff that they could serve as a kind of armour. |
| | | |
| In his seventeenth century diary, Streynsham Master refers to a textile called herba which he equates with tasar (a wild silk); while an eighteenth century French commercial dictionary mentions a bast fibre called simply ecorce d'arbre (bark of tree), said to stand midway between silk and hemp in its attributes. It was mixed with silk to weave the cloth variety called gingham. In view of the affinity between Rhea and fibres such as wool and silk pointed out by G.Watt, this fibre noted by the Europeans may be taken as a variant of Boehmeria nivea. It could equally well be associated with Ulatkambal, mentioned by Thomas Wardle.<ref name=":0" /> | | In his seventeenth century diary, Streynsham Master refers to a textile called herba which he equates with tasar (a wild silk); while an eighteenth century French commercial dictionary mentions a bast fibre called simply ecorce d'arbre (bark of tree), said to stand midway between silk and hemp in its attributes. It was mixed with silk to weave the cloth variety called gingham. In view of the affinity between Rhea and fibres such as wool and silk pointed out by G.Watt, this fibre noted by the Europeans may be taken as a variant of Boehmeria nivea. It could equally well be associated with Ulatkambal, mentioned by Thomas Wardle.<ref name=":0" /> |
Line 91: |
Line 90: |
| | | |
| === Silk === | | === Silk === |
− | The silk tradition in India is a very early one and by the time of the compilation of the Arthashastra there had emerged a clear sense of the distinction between Indian and Chinese silk, and, within India, there was an association between the colour and the quality of local bi- and multi-voltine cocoons of Bombyx mori (mulberry feeding moth), and that spun from the cocoon of the multi-voltine Atticus ricini (Eri). Wild silk is reeled from Antherea mylitta (Tasar), Antherea assamensis and Saiumia assama (Muga). While Eri is obtained from the cocoons of the moth Philosamia cynthia. This distinction between domesticated and will silk is based on whether the worm can be reared under controlled conditions or not, i.e. whether the worm is fed indoors or left to find its nutriment and complete its life cycle outdoors. Bengal and Assam have been the traditional centres for mulberry silk. Muga and Eri are restricted to Assam, while Tasar has been produced in Bengal, Orissa, Bihar and Andhra Pradesh. | + | The silk tradition in India is a very early one and by the time of the compilation of the [[Arthashastra (अर्थशास्त्रम्)|Arthashastra]] there had emerged a clear sense of the distinction between Indian and Chinese silk, and, within India, there was an association between the colour and the quality of local bi- and multi-voltine cocoons of Bombyx mori (mulberry feeding moth), and that spun from the cocoon of the multi-voltine Atticus ricini (Eri). Wild silk is reeled from Antherea mylitta (Tasar), Antherea assamensis and Saiumia assama (Muga). While Eri is obtained from the cocoons of the moth Philosamia cynthia. This distinction between domesticated and will silk is based on whether the worm can be reared under controlled conditions or not, i.e. whether the worm is fed indoors or left to find its nutriment and complete its life cycle outdoors. Bengal and Assam have been the traditional centres for mulberry silk. Muga and Eri are restricted to Assam, while Tasar has been produced in Bengal, Orissa, Bihar and Andhra Pradesh. |
| | | |
| Mulberry silk has a tradition of being woven even in areas ignorant of its cultivation, but the weaving of wild silk has tended to be more localised being generally restricted to the actual regions where the raw material was produced.<ref name=":0" /> | | Mulberry silk has a tradition of being woven even in areas ignorant of its cultivation, but the weaving of wild silk has tended to be more localised being generally restricted to the actual regions where the raw material was produced.<ref name=":0" /> |
Line 139: |
Line 138: |
| None of these methods of weaving involve usage of elaborate loom procedures. The investment is in terms of manual skill. In fact, the Jamdani and tapestry both pre-date the introduction of the Islamic repertoire in weaves. | | None of these methods of weaving involve usage of elaborate loom procedures. The investment is in terms of manual skill. In fact, the Jamdani and tapestry both pre-date the introduction of the Islamic repertoire in weaves. |
| [[File:Tapes for tying manuscripts.PNG|left|thumb|Fig. 13 Tapes for tying manuscripts, possibly made in Varanasi acquired in A.D. 1885. It is double faced in reversible colour. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n415/mode/2up p.377.] Fig.14.</ref>]] | | [[File:Tapes for tying manuscripts.PNG|left|thumb|Fig. 13 Tapes for tying manuscripts, possibly made in Varanasi acquired in A.D. 1885. It is double faced in reversible colour. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n415/mode/2up p.377.] Fig.14.</ref>]] |
− | In South India where garments follow the mode of the ground fabric being fashioned in one colour with borders of another, the interlock is found at junctions where two opposing weft coloured picks are united. Since three separate shuttles are used in this category of weaving, this is also called the three shuttle technique (Fig.20). | + | In South India where garments follow the mode of the ground fabric being fashioned in one colour with borders of another, the interlock is found at junctions where two opposing weft coloured picks are united. Since three separate shuttles are used in this category of weaving, this is also called the three shuttle technique (Refer Fig.21). |
− | [[File:Lifting of warp ends.PNG|left|thumb|Fig. 15. Lifting of warp ends for design area in Moirangphee fabric done through the Jamdani technique. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n417/mode/2up p.378.] Fig.15b.</ref>]] | + | [[File:Lifting of warp ends.PNG|thumb|Fig. 15. Lifting of warp ends for design area in Moirangphee fabric done through the Jamdani technique. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n417/mode/2up p.378.] Fig.15b.</ref>]] |
− | [[File:Structure of slit tapestry.PNG|thumb|Fig. 16. Structure of slit tapestry as in Panja dari. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n417/mode/2up p.378.] Fig.16a.</ref>]]
| + | [[File:Structure of Jamdani fabric.PNG|thumb|Fig. 14. Structure of Jamdani fabric. 1. Warp, 2. Weft, 3. Supplementary weft. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n415/mode/2up p.377.] Fig.15a.</ref>|left]] |
− | [[File:Structure of Jamdani fabric.PNG|thumb|Fig. 14. Structure of Jamdani fabric. 1. Warp, 2. Weft, 3. Supplementary weft. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n415/mode/2up p.377.] Fig.15a.</ref>]] | |
| The major differentiation between the North and South Indian schema in ornamentation is that in the former there is greater reliance on weft patterning whereas in the latter there has been a greater orientation to warp ornamentation. This is reflected in loom typology. The ability to experiment with weft structures is associated with the development of the reed which ensures a more even separation of ends and maintenance of tension. The reed number is related to the count of the yarn, and this in turn, conforms to the structure of the fabric. Its presence on the loom would also facilitate the working of loom attachments such as multiple shafts and harnesses. | | The major differentiation between the North and South Indian schema in ornamentation is that in the former there is greater reliance on weft patterning whereas in the latter there has been a greater orientation to warp ornamentation. This is reflected in loom typology. The ability to experiment with weft structures is associated with the development of the reed which ensures a more even separation of ends and maintenance of tension. The reed number is related to the count of the yarn, and this in turn, conforms to the structure of the fabric. Its presence on the loom would also facilitate the working of loom attachments such as multiple shafts and harnesses. |
| + | [[File:Structure of slit tapestry.PNG|thumb|Fig. 16. Structure of slit tapestry as in Panja dari. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n417/mode/2up p.378.] Fig.16a.</ref>|left]] |
| + | The level at which major innovations to the loom begin to taper off is marked at the point when the harness attachment, associated with the drawloom, comes into existence. Functionally, the mechanism of the North, simplistically called the Banaras jala, and that of the South identified through the terms, jhungu and adai, are similar. |
| [[File:Panja Dari.PNG|thumb|Fig. 17. Panja Dari. Courtesy: INSA.]] | | [[File:Panja Dari.PNG|thumb|Fig. 17. Panja Dari. Courtesy: INSA.]] |
| [[File:Structure of single weft.PNG|left|thumb|Fig. 18. Structure of single weft interlock found, on occasion, in Kani Pashmina. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n417/mode/2up p.379.] Fig.16b.</ref>]] | | [[File:Structure of single weft.PNG|left|thumb|Fig. 18. Structure of single weft interlock found, on occasion, in Kani Pashmina. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n417/mode/2up p.379.] Fig.16b.</ref>]] |
| + | However, there is a wide disparity if these are viewed from the points of view of origin and chronology. |
| + | # The Banaras Jala is derived from the Persian drawloom which achieved its specific identity under the Seljuks, A.D. 1038-1194. This would place the Banaras jala well within the medieval period. |
| + | # The lineage of the adai and jhungu (Refer Fig.22) on the other hand, can be traced to the Malay Kota Bahru and the Chinese Han dynasty derived Kuala Trengganu loom of Thailand. In adai, the weaver manipulates the extra warp ends by pulling jhungu, tassels attached to these ends above the loom. While a helper standing to the side of the loom operates the harness for elaborate weft ornamentation.<ref name=":0" /> |
| [[File:Structure of double interlock.PNG|left|thumb|Fig. 19. Structure of double interlock found in Kani Pashmina and Paithani borders on Pallus. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n417/mode/2up p.379.] Fig.16c.</ref>]] | | [[File:Structure of double interlock.PNG|left|thumb|Fig. 19. Structure of double interlock found in Kani Pashmina and Paithani borders on Pallus. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n417/mode/2up p.379.] Fig.16c.</ref>]] |
− | The level at which major innovations to the loom begin to taper off is marked at the point when the harness attachment, associated with the drawloom, comes into existence. Functionally, the mechanism of the North, simplistically called the Banaras jala, and that of the South identified through the terms, jhungu and adai, are similar.
| + | == Conclusion == |
| [[File:Structure of dovetailing.PNG|thumb|Fig. 20. Structure of dovetailing. This is found in Panja dari weaves and border ornamentation of Kulu and Kinnaur weaves, Himachal Pradesh. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n417/mode/2up p.379.] Fig.16d.</ref>]] | | [[File:Structure of dovetailing.PNG|thumb|Fig. 20. Structure of dovetailing. This is found in Panja dari weaves and border ornamentation of Kulu and Kinnaur weaves, Himachal Pradesh. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n417/mode/2up p.379.] Fig.16d.</ref>]] |
− | However, there is a wide disparity if these are viewed from the points of view of origin and chronology. The Banaras Jala is derived from the Persian drawloom which achieved its specific identity under the Seljuks, A.D. 1038-1194 (Wulff, p.l76; Varadarajan, 1991, pp. 208, 217, 4.5). This would place the Banaras jala well within the medieval period. The lineage of the adai and jhungu (Fig.21) on the other hand, can be traced to the Malay Kota Bahru and the Chinese Han dynasty derived Kuala Trengganu loom of Thailand (28).
| |
− |
| |
− | (28) This problem has been discussed in greater depth in Varadarajan and Patel, pp.8-11.
| |
− |
| |
− | In adai, the weaver manipulates the extra warp ends by pulling jhungu, tassels attached to these ends above the loom (Fig.22a.). For elaborate weft ornamentation a helper standing to the side of the loom operates the harness (Fig.22 b).<ref name=":0" />
| |
− |
| |
− | == Conclusion ==
| |
| In the absence of archaeological evidence and written records pertaining to textile technology, any attempt to trace the evolution of this technology during the ancient period has to be based on ethnographic evidence and craft tradition. Methodological problems arise which can be traced to the implicit dichotomy between historical evidence for which an established time frame and chronology are of prime importance, and ethnological evidence which cuts through the barrier of time and finds its anchorage in cultural modes. However, there is an innate logic in the latter which facilitates identification of false presumptions, bringing inferences made in this sphere into line with hard historical evidence. It is this methodology which has been adopted in this review aimed at tracing textile technology of the ancient period in India.<ref name=":0" /> | | In the absence of archaeological evidence and written records pertaining to textile technology, any attempt to trace the evolution of this technology during the ancient period has to be based on ethnographic evidence and craft tradition. Methodological problems arise which can be traced to the implicit dichotomy between historical evidence for which an established time frame and chronology are of prime importance, and ethnological evidence which cuts through the barrier of time and finds its anchorage in cultural modes. However, there is an innate logic in the latter which facilitates identification of false presumptions, bringing inferences made in this sphere into line with hard historical evidence. It is this methodology which has been adopted in this review aimed at tracing textile technology of the ancient period in India.<ref name=":0" /> |
| + | [[File:Structure of three shuttle weaving.PNG|left|thumb|Fig. 21. Structure of three shuttle weaving. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n421/mode/2up p.382.] Fig.20.</ref>]] |
| + | [[File:Adai loom.PNG|thumb|Fig. 22. The Adai Loom. 1. Comber Board. 2. Harness. 3. Maileyers. 4. Varnish Healds. 5. Lingo. 6. Jungus. 7. Shafts. 8. Reed. 9. Cloth beam. 10. Warp beam. 11. Cross threads. 12. Cross border Jungus. 13. Pedals. Courtesy: INSA.<ref>A. K. Bag, History of Technology in India (Vol. I), New Delhi: Indian National Science Academy, Lotika Varadarajan & Krishna Amin Patel, Textile Technology, [https://archive.org/details/in.ernet.dli.2015.205662/page/n421/mode/2up p.382.] Fig.21.</ref>]] |
| | | |
| == References == | | == References == |
| <references /> | | <references /> |
| + | [[Category:Shastras]] |
| + | [[Category:Kala]] |