Line 138: |
Line 138: |
| Seasonal correlations with crops are enumerated in the Taittiriya Samhita. It presents a small crop chart containing four crops and their associated ripening seasons: <blockquote>यवं ग्रीष्मायौषधीर्वर्षाभ्यो व्रीहीञ्छरदे माषतिलौ हेमन्तशिशिराभ्याम् । (Tait. Samh. 7.2.10.2). </blockquote>The hot season for barley (यव); autumn for rice; winter and cool season for beans and sesame. Barley ripened in summer was sown undoubtedly in winter as in present day. Likewise rice ripened in autumn used to be sown in the beginning of the rains. Beans and sesame planted at the time of summer rains were ripened in the winter and the cool season.<ref name=":3" /> | | Seasonal correlations with crops are enumerated in the Taittiriya Samhita. It presents a small crop chart containing four crops and their associated ripening seasons: <blockquote>यवं ग्रीष्मायौषधीर्वर्षाभ्यो व्रीहीञ्छरदे माषतिलौ हेमन्तशिशिराभ्याम् । (Tait. Samh. 7.2.10.2). </blockquote>The hot season for barley (यव); autumn for rice; winter and cool season for beans and sesame. Barley ripened in summer was sown undoubtedly in winter as in present day. Likewise rice ripened in autumn used to be sown in the beginning of the rains. Beans and sesame planted at the time of summer rains were ripened in the winter and the cool season.<ref name=":3" /> |
| | | |
− | === Sowing Methods === | + | ==== Sowing Methods ==== |
| Sowing being an important process in cultivation, it was given serious attention and care. Befitting its importance solemn rites were performed on the occasion. Panini (IV.3.45) shows that farmers selected auspicious days for sowing seeds; the full-moon day of the month of Agrahayana was one such auspicious day. Apart from the rites that are followed, a few points about the knowledge of ancient agriculturalists regarding sowing methods, crop season, water availability are discussed.<ref name=":1" /> | | Sowing being an important process in cultivation, it was given serious attention and care. Befitting its importance solemn rites were performed on the occasion. Panini (IV.3.45) shows that farmers selected auspicious days for sowing seeds; the full-moon day of the month of Agrahayana was one such auspicious day. Apart from the rites that are followed, a few points about the knowledge of ancient agriculturalists regarding sowing methods, crop season, water availability are discussed.<ref name=":1" /> |
| * '''Seed quantity''' required per field was well estimated practically which are confirmed by epigraphic records. | | * '''Seed quantity''' required per field was well estimated practically which are confirmed by epigraphic records. |
Line 182: |
Line 182: |
| * Special manures for flowering plants, and creepers are described. | | * Special manures for flowering plants, and creepers are described. |
| Thus fertilizing quality of manures and application after the ploughing of the field and sometimes at the time of the transplantation or later after weeding are well noted. | | Thus fertilizing quality of manures and application after the ploughing of the field and sometimes at the time of the transplantation or later after weeding are well noted. |
| + | === Prediction of Rainfall === |
| + | The systematic study of meteorological science was made by our ancient astronomers and astrologers. Agriculture is totally dependent on rainfall as was first realized by Indians. Hence they started gauging the sky for rainfall prediction. Parashara gave the techniques of rainfall prediction and agricultural practices for crop production. Garg invented the science of astrology. Arybhata measured the time period of different planets and distance from earth. Varahmihira (600 AD) studied weather prediction and measurement of rainfall, touching zenith in the meteorological science. The hypotheses given by ancient scientists are simple and costly apparatus were not used. Observations coupled with experience over centuries developed meteorology (Varshney, 2007).<ref name=":3" /> |
| + | |
| + | The methods used by local and indigenous people for forecasting rainfall and other weather conditions on the basis of bio-indicator and the phenology of plants and behaviour of animals is coined as a new term – Presage biology. The production and application of local forecasts are deeply localized, derived from intimate interactions with a micro-environment whose rhythms are intertwined with the cycles of seasonal changes. Local indicators and local knowledge systems can not be replaced with scientific knowledge, because they are holistic and specific to local situations, providing farmers and others with the ability to make decisions and prepare for the coming agricultural year. Mechanisms for integrating both traditional and scientific weather forecast systems would reduce uncertainties and improve farm management, as well as provide a basis for integrating scientific forecasts into existing decision processes of farmers (Acharya, 2011). Bio-indicators as well as Almanacs (Panchang) have been used to predict the weather for a very long time and many times proved very effective and successful.<ref name=":03" /> |
| + | |
| + | The study of the correlation between weather and heavenly phenomena and their impact on crop prospects was a part of agricultural activities. Development of this idea is noticed during the Harappa period in regard to several heavenly bodies which were believed, not only in India but also elsewhere, to be rain-bearing agents. These are Mrgasira (Orionis), Krttika (Pleiades) and Venus. In all probability these heavenly bodies got predominance as indicator of seasonal rainfall, cultivation of crops other than barley and wheat, and growth of fish-crops. |
| + | |
| + | The idea of correlation between seasonal rainfall and associated heavenly phenomena is explicit in the Vedic period. Crop prospects began to be studied in relation to seasonal rain, fogginess and dew under the influence of heavenly bodies. Rainfall: The R. gveda recognizes two seasons of rainfall, associated with summer solstice and winter solstice. |
| | | |
| == Agricultural implements == | | == Agricultural implements == |
Line 203: |
Line 211: |
| | | |
| Transport for carrying agricultural products: Two types of carriers, viz ana– sa (carts) and sƒakat.a (wagon) were for commercial types. The former was two-wheeled, made of woods of Acacia and Dalbergia with bamboo poles and wheels rimmed with metal tyre (pavi). The latter was also wooden body and especially meant for carrying agricultural products from the field. The chariots, in addition to those two were used for carrying agricultural products from the field. Animals employed for drawing these carriers were ox, stallion, ram and dog.75 | | Transport for carrying agricultural products: Two types of carriers, viz ana– sa (carts) and sƒakat.a (wagon) were for commercial types. The former was two-wheeled, made of woods of Acacia and Dalbergia with bamboo poles and wheels rimmed with metal tyre (pavi). The latter was also wooden body and especially meant for carrying agricultural products from the field. The chariots, in addition to those two were used for carrying agricultural products from the field. Animals employed for drawing these carriers were ox, stallion, ram and dog.75 |
− | === Prediction of Rainfall ===
| |
− | The systematic study of meteorological science was made by our ancient astronomers and astrologers. Agriculture is totally dependent on rainfall. This fact was first realised by Indians. Hence they started gauging the sky for rainfall prediction. Parashra gave the techniques of rainfall prediction and agricultural practices for crop production. Garg invented the science of astrology. Arybhata measured the time period of different planets and distance from earth. Varahmihira (600 AD) studied weather prediction and measurement of rainfall, touching zenith in the meteorological science. The hypotheses given by ancient scientists are simple and costly apparatus were not used. Observations coupled with experience over centuries developed meteorology (Varshney, 2007).
| |
− |
| |
− | The methods used by local and indigenous people for forecasting rainfall and other weather conditions on the basis of bio-indicator and the phenology of plants and behaviour of animals is coined as a new term – Presage biology. The production and application of local forecasts are deeply localized, derived from intimate interactions with a micro-environment whose rhythms are intertwined with the cycles of seasonal changes. Local indicators and local knowledge systems can not be replaced with scientific knowledge, because they are holistic and specific to local situations, providing farmers and others with the ability to make decisions and prepare for the coming agricultural year. Mechanisms for integrating both traditional and scientific weather forecast systems would reduce uncertainties and improve farm management, as well as provide a basis for integrating scientific forecasts into existing decision processes of farmers (Acharya, 2011). Bio-indicators as well as Almanacs (Panchang) have been used to predict the weather for a very long time and many times proved very effective and successful.<ref name=":0">Patil, Parashuram Vishnu. (2012) Ph. D. Thesis: ''[https://shodhganga.inflibnet.ac.in/handle/10603/106088 Studies on traditional agricultural practices and food grain management from Bhor Pune district and Mahad Raigad district Maharashtra state.]'' Savitribai Phule Pune University. ([https://shodhganga.inflibnet.ac.in/bitstream/10603/106088/12/12_chapter4.pdf Chapter 4])</ref>
| |
− |
| |
− | The study of the correlation between weather and heavenly phenomena and their impact on crop prospects was a part of agricultural activities. Prior of the Vedic period we have no record of this type of practice, excepting a few instances. Development of this idea is noticed during the Harappa period in regard to several heavenly bodies which were believed, not only in India but also elsewhere, to be rain-bearing agents. These are Mrgasira (Orionis), Krttika (Pleiades) and Venus.109 In all probability these heavenly bodies got predominance as indicator of seasonal rainfall, cultivation of crops other than barley and wheat, and growth of fish-crops.
| |
− |
| |
− | The idea of correlation between seasonal rainfall and associated heavenly phenomena is explicit in the Vedic period. Crop prospects began to be studied in relation to seasonal rain, fogginess and dew under the influence of heavenly bodies. Rainfall: The R. gveda recognizes two seasons of rainfall, associated with summer solstice and winter solstice.
| |
| | | |
| An in depth study of these processes show how our ancient farmer has holistic education in various sciences compared to the modern day scientist. | | An in depth study of these processes show how our ancient farmer has holistic education in various sciences compared to the modern day scientist. |