Calculus was discovered in India

From Dharmawiki
Jump to navigation Jump to search

Background

For years, English scientist Isaac Newton and German philosopher Gottfried Leibniz both claimed credit for inventing the mathematical system sometime around the end of the seventeenth century. The true credit lies with the ancient Bharat's Mathematics systems. The "Kerala school," a little-known group of scholars and mathematicians (notably Madhava & Nilakantha) in fourteenth century India, identified the "infinite series" — one of the basic components of calculus— around 1350.

The beginnings of modern maths and of all other knowledge systems has been seen as a European achievement. This has been made possible through the brilliant strategy of the East India Company traders who under the guise of 'studying pagan cultures & civilising the savages', digested and assimilated as their own, the native knowledge systems.

Of course the self-styled Western scholars and their Bharat's recruits like Joseph (2000) claim that indian systems have been ignored or overlooked & see it as a simple outcome of Christian colonialism and not as a well-organised strategy to not only control global resources but also the knowledge systems. He attributes other factors like "There is also little knowledge of the ancient form of the local language of Kerala, Malayalam, in which some of most seminal texts, such as the Yuktibhasa, from much of the documentation of this remarkable mathematics is written," exposes the perfidy of the Christians who used local Sanskrit scholars to translate our texts to steal our knowledge and 'digest' it to claim as their own.

Knowledge and Bharat's civilization

Most of the amazing science and technology knowledge systems of the modern world are credited to have started around the time of the in Europe in ~ the 15th century. These knowledge systems are generally traced back to roots in the civilization of Ancient Greece, and occasionally, that of Ancient Egypt. Notably both these civilisations were destroyed, their indigenous population decimated or converted to Christianity or Islam by the invaders and their knowledge digested and presented as ancient knowledge. Hence, most of the heroes we are taught about in school and college are European or Greek.  As for India, or even China, it would appear that they have played a minimal role in this magical story. Most Western accounts of the Ascent of Man do not devote even a single line to India’s contributions and the world is kept largely ignorant of India's great contribution to the world in every aspect of knowledge. This is due to the creation of Indology, a system totally unique to colonial India, started by the East India Company to not only digest, but regurgitated as western marvels of science and technology. Post independence, this evil startegy was continued through a dedicated and well-paid bad of brown sepoys wh delineralely neglected any scholarly studies on our history and heritage and specialised in higlihting the ''. Incidentally, this is in contrast to the attitude in almost any other country – people elsewhere have a keen interest and fierce pride and celebrate their own contributions to world knowledge and heritage. Several countries also make a living out of their past through tourism!  However, there does exist, thanks in part to valiant individual efforts, some kind of a background awareness that the Bharat's civilization is in fact one of the most ancient and glorious, and that India has contributed enormously, perhaps even predominantly, to the growth of world civilization and knowledge in practically every field, ranging from the mundane and practical to the unworldly and adhyatmik.

 Some well-known early Indic contributions to Mathematics

In the sciences, seminal contributions have in fact been made by Ancient India to mathematics, astronomy, chemistry, metallurgy, the list is long.  Some Bharat's contributions to mathematics are well known (at least in India) : the zero, the decimal place value system and the commonly used numerals, the so-called Indo-Arabic numerals (called Arabic numerals in the West) were discovered in Ancient India. In fact, the importance of these is such that without these, mathematics (and science, commerce, etc.) as we know it would not have even existed!  Further, few are aware that there has been a continuous unbroken tradition of mathematics in India from at least a thousand BCE (and perhaps even several thousand BCE) to ~ 200 years ago, and then again in the modern era.  

The discovery of the Kerala School of Mathematics

A relatively recently discovered field is what goes by the name of the Kerala School of Mathematics which flourished in a tiny corner of present-day Kerala during ~ 1300-1600 CE.  Many details about the work of this school and the story of the mathematicians who contributed to it are only now being researched. This despite the fact that this work was brought to the attention of western scientists almost 200 years ago.  In 1834,  an Englishman named Charles  M. Whish  published an article  entitled

"On the Hindu quadrature of the circle and the infinite series of the proportion of the circumference to the diameter exhibited in the four sastras, the Tantrasangraham, Yukti-Bhasha, Caruna-Padhati and Sadratnamala in a journal called the ‘Transactions of the Royal Asiatic Society’ of Great Britain and Ireland. But the article was long ignored.   "

The main contribution of the Kerala school

The Kerala school of mathematicians drew inspiration from much earlier texts, mainly Āryabhata’s Āryabhatiya (499 CE). The Āryabhatiya had in fact been a very influential text all over the country, and also, through its translations, in the Arab world and in Europe.   The Kerala mathematicians, starting with Mādhava, developed some amazing mathematics – in particular, the branch of mathematics that is known today as Calculus, one of the foundation stones of modern science which developed from Europe.

We have all been taught in school that Calculus was discovered by (Leibniz and) Newton. But Newton’s Magnum Opus, the Principia Mathematica, in which he discusses the Calculus essential for his Laws of Motion, was written around ~1700 CE. Thus, even orthodox historians and scientists now agree that the Kerala Calculus pre-dates that of Newton by at least a clear 200 years.     A little more on some of the contributions of the Kerala school  Calculus is the mathematical study of change, and its essence is the use of  infinitesimals / limits  (and, one of the passages to limit is by summing an infinite series).  The concept of limit as given by Nīlakantha in Āryabhatiya-bhāsya : k+.TMa :pua:naH ta.a:va:de:va va:DRa:tea ta.a:va:dõ Ra:tea .ca ?

How is it that [the sum of the series] increases only up to that [limiting value] and that certainly increases up to that [limiting value]? Infinite series expansions for trigonometric functions (e.g., sine, cosine, arctan, ..) (now attributed to Newton), and finite series approximations to them. Estimation of correction terms and their use in the generation of faster convergent series. Extrapolations for sin Ө and cos Ө for nearby Ө’ values to the second and third order of (Ө- Ө’). Binomial series expansion. Taylor series expansion. Infinite series expansion of  π (now known as the Gregory – Leibniz series). Discussion of irrationality of  π. Sum of natural numbers Summation of series (Sankalita in Sanskrit) (i.e., Integration ). Instantaneous velocity (of planets) and derivatives. Besides arriving at the infinite series, that several forms of rapidly convergent series could be obtained is remarkable. Further, many equations that we use in Calculus which are attributed to western mathematicians were clearly known to the Bharat's mathematicians. They laid the foundations of Calculus, which is recognized as one of the foundations of modern science, and which has applications in many fields including engineering and economics. These mathematicians also made important contributions to astronomy, but those will be the subject of a separate article. In fact,  much of this work seems to have arisen from an interest in predicting planetary positions, sunrise, sunset etc. to a very high accuracy for the  conduct of worldly affairs. 

Who were these people ? – some historical details

Most of these developments took place in temple-villages around a river called Nila in the ancient days (and currently called river Bharatha, the second longest river in Kerala) during ~ 1300-1600 CE. In fact, the area over which this work was carried out was so localized, that some scholars suggest that the school is more appropriately named the Nila School of Mathematics. One of the key villages was Sangamagrāma, which was possibly the present-day village of Irinhalakkuta (about 50 km to the south of Nila). (However, there are a few other possible candidates for Sangamagrāma , such as Kudalur and Tirunavaya). What is more certain was the existence of a remarkable lineage of mathematicians in and around Sangama-grama of which the pioneer,  Mādhava (~1340-1420)   seems to be the one who discovered many of the basic ideas of Calculus. The Kerala school was a culmination of the school of Āryabhata and seems to have been the last bastion of mathematics in India till the modern era. The school seems to have died out soon after the arrival of the Portuguese in Kerala for obvious historical reasons. (Prof Ram)

The Lineage

Mādhava (c.1340–1420) of Sangamagrāma, Pioneer of the Kerala School, discovered many of the basic ideas of Calculus. The only works of his which seem to be extant are Venvāroha and Sphutacandrāpati.

Parameśvara (c. 1380–1460) of Vatasseri, Mādhava’s disciple, great observer and prolific writer.

Nīlakantha Somayājī (c. 1444–1550) of Kundāgrama monumental works are Tantrasangraha and Āryabhatiya-bhāsya.

Jyesthadeva (c. 1530) Author of the celebrated Ganita Yuktibhāsā (in Malayalam prose). Śankara Vāriyar (c.1500–1560) of Tr.ikkutaveli Author of two major commentaries. Acyuta Pisārati (c. 1550–1621) Disciple of Jyesthadeva,  a polymath Pudumana Somayaji Work : Karana Paddhati Rājā Śankaravarman  (c.1830) of Kadattanadu Work : Sadratnamala. These (and other ancient) texts were written on (dried) palm leaves, which last for ~ 400 years. The language used was mostly Sanskrit and the mathematics was given in verse! in sutras.

Did Calculus travel from Kerala to Europe?

The big question now is: did the Europeans know of the Kerala Calculus? Circumstantial evidence indicates that they did, as many texts from Kerala were translated and transmitted to Europe during this period by the Jesuit priests who had learnt the local languages. Further, it is well known that there have been strong links through trade from times immemorial between Kerala and the West. However, scholars suggest that more direct evidence is required that the knowledge of the Kerala mathematics was indeed transferred to the West. For instance, can we find translations of the Kerala texts, dating to around 1600 CE, from Sanskrit and Malayalam to English or any of the European languages? An extensive search needs to be carried out in both Kerala and European libraries. Unfortunately, some important libraries have been lost : in 1663, the Dutch  burned down the Jesuit library of Cochin which contained many volumes in local and European languages; and in 1775, almost all the archives and libraries in Lisbon, Portugal (including those which housed their colonial records), were destroyed by an earthquake.

Summary

As we have mentioned earlier, the essence of Calculus is the use of limits. We end this brief article with the following quotes, the first by Charles Seife in Zero:The Biographyof a Dangerous Idea (Viking, 2000; Rupa & Co. 2008):

 

"The Greeks could not do this neat little mathematical trick. They didn’t have the concept of a limit because they didn’t believe in zero. The terms in the infinite series didn’t have a limit or a destination; they seemed to get smaller and smaller without any particular end in sight. As a result the Greeks couldn’t handle the infinite. They  pondered the concept of void but rejected zero as a number, and they toyed with the concept of infinite but refused to allow infinity – numbers that are infinitely small and infinitely large – anywhere near the realm of numbers. This is the biggest failure in the Greek Mathematics, and it is the only thing that kept them from discovering Calculus. "

Unlike Greece, India never had the fear of the infinite or of the void. Indeed, it embraced them. Bharat's mathematicians did more than simply accept zero. They transformed it changing its role from mere placeholder to number. The reincarnation was what gave zero its power. The roots of Bharat's mathematics are hidden by time. Our numbers (the current system) evolved from the symbols that the Bharat'ss used; by rights they should be called Bharat's numerals rather than Arabic ones. Unlike the Greeks the Bharat'ss did not see the squares in the square numbers or the areas of rectangles when they multiplied two different values. Instead, they saw the interplay of numerals—numbers stripped of their geometric significance. This was the birth of what we now know of as algebra.

And finally, a quote by the famous mathematician John von Neumann:

"The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics, and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking."

Further reading

Interested readers can find mathematical and historical  details in the following articles (and references therein):

1) K. V. Sarma, K. Ramasubramanian, M. D. Srinivas and M. S. Sriram, Ganita-Yukti-Bhasha (Rationales in MathematicalAstronomy) of Jyeshthadeva, Springer (2008).

2) K. Ramasubramanian and M. D. Srinivas, Studies in the History of Bharat's Mathematics  Ed. by C. S. Seshadri, Hindustan Book Agency, New Delhi, pgs. 201 – 286 (2010).   3)T. Padmanabhan, Dawn of Science : Calculus is  developed in Kerala, Resonance pgs. 106 -115 (Feb 2012).

4) Science and Technology in Ancient India, Ed. Editorial Board, Vijnan Bharati, Mumbai (2006).

References