Difference between revisions of "Krshi Vijnana (कृषिविज्ञानम्)"

From Dharmawiki
Jump to navigation Jump to search
Line 28: Line 28:
 
# Fertilizing the crops
 
# Fertilizing the crops
 
# Harvesting and storage
 
# Harvesting and storage
Along with the knowledge for performing the above processes, a few areas where traditional knowledge of farming is available includes prediction of rainfall, tillage, mixed cropping, crop rotation, crop protection, terrace farming, agricultural implements.   
+
For performing these processes, traditional knowledge of farming is available in aspects such as prediction of rainfall, tillage, mixed cropping, crop rotation, crop protection, terrace farming, and agricultural implements.   
  
 
The development of agriculture is reflected in the number of tools and implements fashioned by the people of different communities. Of the different stages in cultivation the impact of implements is seen in the first and basic one, that is tillage. The nature of operations under the tillage may vary from region to region and so will vary the implements used. The most important of the tools being the plough, is referred to as Langala and Sira in ancient texts. It was made of hard wood like Khadira and Udumhara. Sira (plough) was attached Isa (pole) with a yuga (yoke) attached at its upper side.  
 
The development of agriculture is reflected in the number of tools and implements fashioned by the people of different communities. Of the different stages in cultivation the impact of implements is seen in the first and basic one, that is tillage. The nature of operations under the tillage may vary from region to region and so will vary the implements used. The most important of the tools being the plough, is referred to as Langala and Sira in ancient texts. It was made of hard wood like Khadira and Udumhara. Sira (plough) was attached Isa (pole) with a yuga (yoke) attached at its upper side.  

Revision as of 23:49, 9 April 2020

Krshi Vijnana (Samskrit: कृषिविज्ञानम्) refers to the science of agriculture. Cultivation involves a long process starting from the preparation of land, to sowing of crops under favourable climate conditions, followed by crop protection and harvesting at the appropriate time. Ancient farmers planned their field activities involving meticulous coordination of climatic conditions with knowledge of soil and crop combinations for good yields. It involved watching the skies for cloud formation, prediction of rainfall and soil preparation thereafter selecting the appropriate crop to be sown (based on panchanga) followed by seed sowing and appropriate steps to manure, pollinate and protect the yield from pests. Thus it cannot be more emphasised that a Krshaka (farmer) was highly knowledgeable in the vijnana (scientific) aspects of cultivation, such as astronomy, soil sciences, meteorology, hydrology and irrigation techniques, genetics (rotation of crops and seed selection), ecology, botany, plant protection, mechanics (for making implements) and animal husbandry used in modern parlance. A dire need for research on traditional agricultural practices to find out the ethos behind it and adopt it in the modern times has become the need of the hour.

Bharatiya way of life involves a divine involvement in all activities, so also Krshi karma or Sasyaveda (agriculture) was revered highly for such an activity sustains life of all beings on earth.

Sadly in the present day due to the so called political and economic development and even in the presence of "advanced technology", the farmer is adversely affected in many ways and is at the lowest economic strata of the society.

Video Courtesy : Prof. D.P. Mishra, Dept. of Aerospace Engg, IIT Kanpur

परिचयः ॥ Introduction

Agricultural operations involving crop production comprised soil-preparation inclusive of tillage and fertilization, cropping system, harvesting, crop-processing and preservation. Local storage of the food grains, and fruits were given importance thus sustaining local economy and trade was an important aspect that contributed to the growth of the overall economy of the country until the recent centuries. Newer techniques to protect the agricultural produce and transportation to distant places are significant developments brought about by industrial revolution which has led to opening up of new avenues of trade and commerce in the recent few centuries.

However, with the advent of modern systems, newer problems such as pollution of air, water, land and other environmental changes have greatly disturbed the ecological balance. Needless to say that it is extremely important to research our ancient heritage to adopt integrative agricultural practices for the future of mankind. In the present context, we present the agricultural operations and the rationale (shastra) behind such activities as given in the ancient and later day classical texts.

Krshi Shastra References

A number of classical texts related to agricultural science are available namely, Kautilya's Arthashastra, Patanjali's Mahabhasya, Krishi-Parashara, Varahmihira's Brhat Samhita, and Surapala's Vrikshayurveda are some of the manuscripts that contain valuable information about different aspects such as agricultural implements, selection of seeds, land preparation, pest control, storage, plant nutrients, grafting, soil selection, plant propagation, diseases and plant protection, mixed cropping, crop rotation, intercropping, shifting cultivation, terrace farming etc. India's traditional agriculture has proved to be sustainable by maintaining the country's fertility and biodiversity over centuries.[1]

Agricultural Technology

Broadly the processes which are performed by a farmer include the following eight steps from crop selection to harvesting.

  1. Crop selection based on the land
  2. Land preparation
  3. Seed selection
  4. Seed sowing (including mixed crops)
  5. Irrigation (सेचनविधानानि)
  6. Crop growth
  7. Fertilizing the crops
  8. Harvesting and storage

For performing these processes, traditional knowledge of farming is available in aspects such as prediction of rainfall, tillage, mixed cropping, crop rotation, crop protection, terrace farming, and agricultural implements.

The development of agriculture is reflected in the number of tools and implements fashioned by the people of different communities. Of the different stages in cultivation the impact of implements is seen in the first and basic one, that is tillage. The nature of operations under the tillage may vary from region to region and so will vary the implements used. The most important of the tools being the plough, is referred to as Langala and Sira in ancient texts. It was made of hard wood like Khadira and Udumhara. Sira (plough) was attached Isa (pole) with a yuga (yoke) attached at its upper side.

क्षेत्रम् ॥ Kshetra (Land)

Farming first requires fertile soil. Cultivation areas in different phases of history are thus traced to fertile soils like, mountain clay, alluvial soils of riverplain and black cotton soils found in different geographical areas of India.6

The fertile lower basins of the seven Punjab rivers were highly esteemed for bounteous crops.7 River sides were considered fertile. People are stated to have selected their routes of journey by the river-sides. The Rigveda recognizes two types of land. These are fertile or apnasvati and arid or artana.8 The former is marshy or riverine tract, known as anupa and the latter, arid, known as jangala. Usara (alkaline) and anusara (non-alkaline, i.e., cultivable land) are the two divisions of land found in the Sutra literature.9 Land was alternatively used as arable land called Kshetra (cultivated) and as fallow called as Khila or Khilya (tilled but uncultivated for some time) to maintain the soil's potentiality. Fallow land had different functions: pasture ground and ground for cowshed.12 Both the practices contributed natural fertilization of the soil by cow droppings.[2]

कृषिः ॥ Tillage

Ploughing was generally performed with the help of oxen in teams of six, eight or twelve. Ploughing was also done with the help of one or two sheep. There was also the practice employing a maid for this purpose. Symbolic use of tilling operation in which six oxen are equivalent to six seasons and twelve oxen stand for twelve months and thus signifying twelve months preparation of sacrificial ground for the fire (agni).61

Furrow marks were made in grid pattern: Twelve lines made by plough drawn by twelve oxen were arranged in such a way that three lines arranged vertically, three running over them horizontally and the other six made crisscross.62

Mowing (matyam) was the post-plough operation.63

Crop Specimens

A host of crops scattered in the Yajurvedic texts show the presence of cereals, legumes, oil seeds, fibrous plants, fruit crops and green vegetables.[2]

  • Cereals:

(a) Rice (vrihi): Four cultivated varieties were seen, viz. black (krshna), white (shukla), quick-grown (aasu) and mahavrihi (large grained). The last two varieties were confined only to central India. The quick-grown variety appears to have been known as shastika (ripens within sixty days) in the later periods.

(b) Wheat (godhu– ma);

(c) Barley (yava), and a species of it, upavaka;

(d) Millet (Panic seeds) viz. anu (Panicum milliceum), priyangu (P. italicum), syamaka (P. frumenataceum).

  • Legumes: Four varieties, viz. bean (masha, P. munga), three types of pulses (mudga, P. radiatus; khalva, Lathyrus sativus; masura, lentil, Les esculentus). Reference to wild bean (gaarmut) shows nativity of beans in India.
  • Oil seeds: Sesame (tila); Fibrous plant, cotton (kaarpasa, Gossypium herbaricum);
  • Fruit crops: Sugarcane (ikshu), cucumber (urvaruka), dates (kharjura);
  • Green vegetables: Bottle-guard (alabu, Lagenaria vulgaris).

Atharvaveda and other texts also mention other kinds of crops such as saadadurva (a millet having egg-shaped roots), mustard (abhayu, white and brown), Bhang (the flower of Cannabis sativa) which became a cultivated crop, and the fibrous crop sana (hemp, Crolatoria Junacea) however the above are largely mentioned.[2]

Seasonal correlations with crops are enumerated in the Taittiriya Samhita. It presents a small crop chart containing four crops and their associated ripening seasons:

यवं ग्रीष्मायौषधीर्वर्षाभ्यो व्रीहीञ्छरदे माषतिलौ हेमन्तशिशिराभ्याम् । (Tait. Samh. 7.2.10.2).

The hot season for barley (यव); autumn for rice; winter and cool season for beans and sesame. Barley ripened in summer was sown undoubtedly in winter as in present day. Likewise rice ripened in autumn used to be sown in the beginning of the rains. Beans and sesame planted at the time of summer rains were ripened in the winter and the cool season.[2]

Prediction of Rainfall

The systematic study of meteorological science was made by our ancient astronomers and astrologers. Agriculture is totally dependent on rainfall. This fact was first realised by Indians. Hence they started gauging the sky for rainfall prediction. Parashra gave the techniques of rainfall prediction and agricultural practices for crop production. Garg invented the science of astrology. Arybhata measured the time period of different planets and distance from earth. Varahmihira (600 AD) studied weather prediction and measurement of rainfall, touching zenith in the meteorological science. The hypotheses given by ancient scientists are simple and costly apparatus were not used. Observations coupled with experience over centuries developed meteorology (Varshney, 2007).

The methods used by local and indigenous people for forecasting rainfall and other weather conditions on the basis of bio-indicator and the phenology of plants and behaviour of animals is coined as a new term – Presage biology. The production and application of local forecasts are deeply localized, derived from intimate interactions with a micro-environment whose rhythms are intertwined with the cycles of seasonal changes. Local indicators and local knowledge systems can not be replaced with scientific knowledge, because they are holistic and specific to local situations, providing farmers and others with the ability to make decisions and prepare for the coming agricultural year. Mechanisms for integrating both traditional and scientific weather forecast systems would reduce uncertainties and improve farm management, as well as provide a basis for integrating scientific forecasts into existing decision processes of farmers (Acharya, 2011). Bio-indicators as well as Almanacs (Panchang) have been used to predict the weather for a very long time and many times proved very effective and successful.[3]

An in depth study of these processes show how our ancient farmer has holistic education in various sciences compared to the modern day scientist.

Modern Agriculture

In a stark contrast to the traditional agricultural practices, modern systems of agriculture use genetically engineered and/or hybrid seeds of single crop variety, technologically driven implements and equipments such as tractors, shredders, spreaders etc, chemical fertilizers and pesticides, and water to produce large amounts of single crop. A few characteristics of modern agriculture as discussed by Prof. D. P. Mishra include the following

  • It has higher levels of input and output per unit of agricultural area
  • It has higher use of inputs such as capital, labor, fertilizers, pesticides, plant growth regulators, and mechanization for higher crop yields per unit land area. Many gadgets and implements are needed and higher electricity and fuel costs are involved.
  • Indiscriminate usage of fertilizers, pesticides, fungicides and other such chemicals destroy the ecological balance hurting the other agronomy dependent creatures such as bees, birds, snakes, and frogs.
  • Hazards of air, water, earth pollution are rampant and world environmental activists have been fighting with governing bodies to bring these levels down.
  • It involves mostly single crop cultivation which is not always advantageous ecologically and economically.
  • Storage of grains (air-conditioned godowns, preservatives etc) also involve high costs, increasing the price of food production further.
  • It demands detailed analysis of growing conditions including weather, soil, water, weeds and pests.
  • An individual or small community effort is gradually turned into an mechanized industry whose terms and conditions are now dictated by a few rich individuals controlling this modern system. Days are not far off when a farmer is an employee in his own farm and has to buy his own produce in such conditions for his family needs.
  • It relies on innovation in agricultural machinery and farming methods, genetic technology, techniques for achieving economies of scale logistics. What was originally in-line with natural processes now involves industrial scale technical education.
  • It involves large data collection and analysis technology.
  • Ease of trading practices and taxing system of farmers has to undergo an enormous change to bring down the cost of agricultural produce both of domestic and foreign exports.

Ramifications of such models of agriculture such as widespread pollution of air, water and food are visible on the entire ecosystem. As much as modern outlook with technology and education is required, it has be used minimally with caution.

References

  1. Patil, Parashuram Vishnu. (2012) Ph. D. Thesis: Studies on traditional agricultural practices and food grain management from Bhor Pune district and Mahad Raigad district Maharashtra state. Savitribai Phule Pune University. (Chapter 4)
  2. 2.0 2.1 2.2 2.3 Roy, Mira. Agriculture in the Vedic Period. Indian Journal of History of Science, 44.4 (2009) 497-520
  3. Patil, Parashuram Vishnu. (2012) Ph. D. Thesis: Studies on traditional agricultural practices and food grain management from Bhor Pune district and Mahad Raigad district Maharashtra state. Savitribai Phule Pune University. (Chapter 4)