Difference between revisions of "शिक्षा पाठ्यक्रम एवं निर्देशिका-गणित"
m (Pṛthvī moved page शिक्षा पाठ्यक्रम एवं निर्देशिका-गणित-7 to शिक्षा पाठ्यक्रम एवं निर्देशिका-गणित: adhyay removed...) |
m (Text replacement - "हमेशा" to "सदा") |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
# एक मात्र मनुष्य को ही बुद्धि का वरदान मिला है<ref>प्रारम्भिक पाठ्यक्रम एवं आचार्य अभिभावक निर्देशिका :अध्याय ७, प्रकाशक: पुनरुत्थान प्रकाशन सेवा ट्रस्ट, लेखिका: श्रीमती इंदुमती काटदरे</ref>। जीवन-व्यवहार में बुद्धि का उपयोग हर प्रसंग पर पड़ता ही है। शिक्षा के द्वारा बुद्धि का विकास अपेक्षित है। बुद्धि के विकास के लिए गणित एक बहुत ही उपयोगी विषय है। | # एक मात्र मनुष्य को ही बुद्धि का वरदान मिला है<ref>प्रारम्भिक पाठ्यक्रम एवं आचार्य अभिभावक निर्देशिका :अध्याय ७, प्रकाशक: पुनरुत्थान प्रकाशन सेवा ट्रस्ट, लेखिका: श्रीमती इंदुमती काटदरे</ref>। जीवन-व्यवहार में बुद्धि का उपयोग हर प्रसंग पर पड़ता ही है। शिक्षा के द्वारा बुद्धि का विकास अपेक्षित है। बुद्धि के विकास के लिए गणित एक बहुत ही उपयोगी विषय है। | ||
# बुद्धि के कई आयाम हैं। जैसे परीक्षण, निरीक्षण, संश्लेषण, वर्गीकरण, तर्क, अनुमान, तुलना, निर्णय, विवेक... इत्यादि। इनमें से संश्लेषण, विश्लेषण, क्रमिकता, तर्क, तुलना इत्यादि का विकास गणित के कारण होता है। जीवन के रहस्यों को समझने में इन सभी क्षमताओं का बहुत उपयोग है। | # बुद्धि के कई आयाम हैं। जैसे परीक्षण, निरीक्षण, संश्लेषण, वर्गीकरण, तर्क, अनुमान, तुलना, निर्णय, विवेक... इत्यादि। इनमें से संश्लेषण, विश्लेषण, क्रमिकता, तर्क, तुलना इत्यादि का विकास गणित के कारण होता है। जीवन के रहस्यों को समझने में इन सभी क्षमताओं का बहुत उपयोग है। | ||
− | # गणित से बुद्धि बढ़ती है एवं व्यवस्थित होती है। प्रत्यक्ष जीवन में व्यवस्थित बुद्धि का बहुत बड़ा लाभ है। अन्य विषयों को सीखने में भी यह व्यवस्थित बुद्धि उपयोगी होती है। | + | # गणित से बुद्धि बढ़ती है एवं व्यवस्थित होती है। प्रत्यक्ष जीवन में व्यवस्थित बुद्धि का बहुत बड़ा लाभ है। अन्य विषयों को सीखने में भी यह व्यवस्थित बुद्धि उपयोगी होती है। अतः शिक्षा के प्रारंभ से ही गणित को मुख्य व महत्वपूर्ण विषय माना गया है। |
== आलंबन == | == आलंबन == | ||
# गणित रटकर याद रखने का विषय नहीं है और न ही लिखने या पढ़ने का विषय है। गणित समझने का विषय है। गणना करने का विषय है। इस तथ्य को भूलने के कारण ही गणित में छात्र कच्चे रहते हैं। इस स्थिति को बदलने के लिए लिखने पढ़ने के बजाए गणना करने पर एवं याद रखने के बजाए समझने पर अधिक जोर देना चाहिए। | # गणित रटकर याद रखने का विषय नहीं है और न ही लिखने या पढ़ने का विषय है। गणित समझने का विषय है। गणना करने का विषय है। इस तथ्य को भूलने के कारण ही गणित में छात्र कच्चे रहते हैं। इस स्थिति को बदलने के लिए लिखने पढ़ने के बजाए गणना करने पर एवं याद रखने के बजाए समझने पर अधिक जोर देना चाहिए। | ||
− | # | + | # अतः पुस्तक एवं लेखनसामग्री की अपेक्षा यहाँ गणन क्रिया का अधिक महत्व है। प्रथम समझें, फिर गणना करें और इसके पश्चात् पढ़ें या लिखें, यह क्रम होना चाहिए। |
# गणित क्रिया एवं समझ पर आधारित विषय है। इसी प्रकार उसका सीधा संबंध व्यवहार के साथ है। जिस प्रकार शब्द के अर्थ जीवन में होते हैं उसी प्रकार गणित भी जीवन से जुड़ा है। (जीवन अर्थात् व्यक्ति का जीवन नहीं अपितु समष्टि का जीवन।) जिस प्रकार शब्दों का अर्थ प्रथम मूर्त वस्तुओं की सहायता से जाना जा सकता है, उसी प्रकार गणना भी मूर्त वस्तुओं की सहायता से ही हो सकती है। ज्यों ज्यों समझ का विकास होता जाता है त्यों त्यों मानसिक गणना आती जाती है। | # गणित क्रिया एवं समझ पर आधारित विषय है। इसी प्रकार उसका सीधा संबंध व्यवहार के साथ है। जिस प्रकार शब्द के अर्थ जीवन में होते हैं उसी प्रकार गणित भी जीवन से जुड़ा है। (जीवन अर्थात् व्यक्ति का जीवन नहीं अपितु समष्टि का जीवन।) जिस प्रकार शब्दों का अर्थ प्रथम मूर्त वस्तुओं की सहायता से जाना जा सकता है, उसी प्रकार गणना भी मूर्त वस्तुओं की सहायता से ही हो सकती है। ज्यों ज्यों समझ का विकास होता जाता है त्यों त्यों मानसिक गणना आती जाती है। | ||
− | # गणित पूर्व में बताए गए अनुसार प्रारंभ में भले ही मूर्त वस्तुओं की | + | # गणित पूर्व में बताए गए अनुसार प्रारंभ में भले ही मूर्त वस्तुओं की सहायता से गणना सीखने का विषय हो तो भी अंत में तो मानसिक गिनती में निपुण होने का ही विषय है। किसी भी प्रकार के आलंबन के बिना व्यक्ति आसानी से जटिल समस्याओं का हल प्राप्त कर सके, जटिल समस्याओं के हल के लिए प्रयोजित संख्याकीय प्रक्रियाओं के साधनों का उपयोग कर सके, यही बुद्धिविकास है। इसके लिए मूर्त वस्तुओं की गणना अति प्रारंभिक सोपान है। |
− | # संकल्पनाएँ (अवधारणाएँ) समझना यह बुद्धि का क्षेत्र है। गणित अवधारणाओं का विषय है। | + | # संकल्पनाएँ (अवधारणाएँ) समझना यह बुद्धि का क्षेत्र है। गणित अवधारणाओं का विषय है। अतः संकल्पनाओं की समझ को गणित में प्राधान्य देना चाहिए; जानकारियों को नहीं। अवधारणाएँ समझने की क्षमता से ही तत्त्वज्ञान भी समझ में आता है। इन सारी बातों को ध्यान में रखकर ही गणित पढ़ना चाहिए। |
== पाठ्यक्रम == | == पाठ्यक्रम == | ||
Line 28: | Line 28: | ||
=== याद करना === | === याद करना === | ||
− | गणित समझने का विषय है, रटने का नहीं ऐसा प्रारंभ में ही कहा गया है। तो फिर याद करने या रटने का तो प्रश्न ही नहीं उठता ऐसा कोई भी कह सकता है। | + | गणित समझने का विषय है, रटने का नहीं ऐसा प्रारंभ में ही कहा गया है। तो फिर याद करने या रटने का तो प्रश्न ही नहीं उठता ऐसा कोई भी कह सकता है। अतः आजकल याद करने या रटने की क्रिया बहुत ही कम हो गई है, या बंद हो गई है। |
− | परंतु गणना के कुछ साधन हैं। अंक, पहाड़े, सूत्र वगैरह साधन हैं। जरुरत पड़ने पर ये साधन यदि आसानी से प्राप्य हों तो उन्हें तुरंत उपयोग में लिया जा सकता है एवं इससे गणना करना आसान हो जाता है। पहाडे याद करना अर्थात गुणा की क्रिया को याद करना । गुणा करने की प्रक्रिया को समझना एक बात है। गुणा पुनरावर्तित जोड़ ही है यह भी समझना एक अलग बात है। परंतु आगे की गणना में तैयार गुणा ही उपयोग में लेना हो तो पहाड़े बहुत ही उपयोगी साधन है। उसे हम हमारे साथ रहनेवाला जन्मजात हमारा ही अंगभूत ऐसा Ready reckoner या Calculator भी कह सकते हैं। | + | परंतु गणना के कुछ साधन हैं। अंक, पहाड़े, सूत्र वगैरह साधन हैं। जरुरत पड़ने पर ये साधन यदि आसानी से प्राप्य हों तो उन्हें तुरंत उपयोग में लिया जा सकता है एवं इससे गणना करना आसान हो जाता है। पहाडे याद करना अर्थात गुणा की क्रिया को याद करना । गुणा करने की प्रक्रिया को समझना एक बात है। गुणा पुनरावर्तित जोड़ ही है यह भी समझना एक अलग बात है। परंतु आगे की गणना में तैयार गुणा ही उपयोग में लेना हो तो पहाड़े बहुत ही उपयोगी साधन है। उसे हम हमारे साथ रहनेवाला जन्मजात हमारा ही अंगभूत ऐसा Ready reckoner या Calculator भी कह सकते हैं। अतः अंक एवं पहाड़े याद करना पहली-दूसरी कक्षा में महत्वपूर्ण हो सकता है। |
− | मनोवैज्ञानिक रूपसे देखा जाय तो छोटी आयु में स्मृति अधिक तेज होती है परंतु समझशक्ति इतनी अधिक विकसित नहीं होती है। जैसे जैसे आयु बढ़ती जाती है स्मृति शक्ति कम होती है एवं समझ शक्ति बढ़ती जाती है। | + | मनोवैज्ञानिक रूपसे देखा जाय तो छोटी आयु में स्मृति अधिक तेज होती है परंतु समझशक्ति इतनी अधिक विकसित नहीं होती है। जैसे जैसे आयु बढ़ती जाती है स्मृति शक्ति कम होती है एवं समझ शक्ति बढ़ती जाती है। अतः याद रखने की आयु में ज्यादा से ज्यादा याद कर लेना चाहिए एवं समझशक्ति के विकसित होने पर जो जो याद किया हो उसका उपयोग करके उसे समझ लेना चाहिए। समझने के समय में याद रखने या रटने का अधिक काम नहीं करना पड़ता है। यह इसका सबसे बड़ा लाभ है। |
इस दृष्टि से कक्षा १ एवं २ में कंठस्थ करना एक महत्वपूर्ण मुद्दा माना गया है। वहाँ तो अपेक्षा मात्र १ से १०० तक गिनती, १ से १० एवं अद्धे के पहाड़े की ही रखी गई है। छात्र कर सकते हों एवं मातापिता का उत्साह हो तो इससे ज्यादा भी हो सकता है। कंठस्थ करते समय कोई वस्तु साथ में न रखें एवं मात्र बोलकर ही कंठस्थ करें यह अपेक्षित है। | इस दृष्टि से कक्षा १ एवं २ में कंठस्थ करना एक महत्वपूर्ण मुद्दा माना गया है। वहाँ तो अपेक्षा मात्र १ से १०० तक गिनती, १ से १० एवं अद्धे के पहाड़े की ही रखी गई है। छात्र कर सकते हों एवं मातापिता का उत्साह हो तो इससे ज्यादा भी हो सकता है। कंठस्थ करते समय कोई वस्तु साथ में न रखें एवं मात्र बोलकर ही कंठस्थ करें यह अपेक्षित है। | ||
=== गणना करना (गिनती करना) === | === गणना करना (गिनती करना) === | ||
− | गिनती करना एक स्वतंत्र क्रिया है। वह स्लेट, पेन, या पुस्तक से नहीं हो सकती। मात्र बोलने से भी नहीं हो सकती। | + | गिनती करना एक स्वतंत्र क्रिया है। वह स्लेट, पेन, या पुस्तक से नहीं हो सकती। मात्र बोलने से भी नहीं हो सकती। अतः गिनती करने में इन सबका उपयोग नहीं करना चाहिए। गिनती करने के लिए गणना के लिए बहुत सारी वस्तुएँ होती हैं। उदाहरण के तौर पर कक्ष की खिड़कियाँ, दरवाजे, चौकियां, आसन, चित्र, पंखे इत्यादि। छात्र भी गिनती की वस्तु बन सकते हैं। इस प्रकार गणना सदा मूर्त वस्तुओं से ही हो सकती है। |
− | * १ से १०० तक गिनती कंठस्थ करने के बाद ही गिनती करने की | + | * १ से १०० तक गिनती कंठस्थ करने के बाद ही गिनती करने की आरम्भआत करना चाहिए। प्रारंभ में १ से १० तक की संख्या गिनना चाहिए। इस गिनती का खूब अभ्यास करना चाहिए। १ से १० तक की गिनती करने के बाद क्रमशः १५, २०, २५... ऐसे ५० तक ले सकते हैं। |
* ४० तक की गिनती के बाद १०-१० वस्तुओं का समूह बनाना चाहिए एवं प्रत्येक समूह को गिनवाना चाहिए। समूह की गिनती करवाते समय १०-१० का ही समूह बने इस तरह वस्तुएँ पसंद करना चाहिए। इस तरह समूह बनाते बनाते एवं गिनवाते गिनवाते ही गुणा, भाग, आदि की संकल्पना परोक्ष रूप से मस्तिष्क में बैठती जाए इस प्रकार छात्रों को गिनती करवाना चाहिए। (यहाँ गिनती करने एवं समूह बनाने का अभ्यास खूब करवाना चाहिए) | * ४० तक की गिनती के बाद १०-१० वस्तुओं का समूह बनाना चाहिए एवं प्रत्येक समूह को गिनवाना चाहिए। समूह की गिनती करवाते समय १०-१० का ही समूह बने इस तरह वस्तुएँ पसंद करना चाहिए। इस तरह समूह बनाते बनाते एवं गिनवाते गिनवाते ही गुणा, भाग, आदि की संकल्पना परोक्ष रूप से मस्तिष्क में बैठती जाए इस प्रकार छात्रों को गिनती करवाना चाहिए। (यहाँ गिनती करने एवं समूह बनाने का अभ्यास खूब करवाना चाहिए) | ||
* इसके बाद समूह बनाते बनाते वस्तुओं की संख्या बढ़ती जाए एवं उनकी गिनती भी होती रहे, इस तरह वस्तुएँ लेना चाहिए। ऐसा करते-करते ही इकाई, दहाई की संकल्पना १०, २०, ३०... ५० के साथ ही साथ ११, ३५, ४७... जैसी संख्याएँ भी समझ में आती जाएँगी। | * इसके बाद समूह बनाते बनाते वस्तुओं की संख्या बढ़ती जाए एवं उनकी गिनती भी होती रहे, इस तरह वस्तुएँ लेना चाहिए। ऐसा करते-करते ही इकाई, दहाई की संकल्पना १०, २०, ३०... ५० के साथ ही साथ ११, ३५, ४७... जैसी संख्याएँ भी समझ में आती जाएँगी। | ||
Line 44: | Line 44: | ||
=== संकल्पना समझना === | === संकल्पना समझना === | ||
− | # यह सबसे अहम् मुद्दा है। | + | # यह सबसे अहम् मुद्दा है। अतः इसे सबसे ज्यादा समय देना चाहिए। संख्या की गणना के समान ही यह भी मूर्त वस्तुओं की सहायता से ही समझना चाहिए। द्वन्द्व के परिचय के लिए एक से अधिक वस्तुओं का उपयोग करना चाहिए। प्रत्यक्ष वस्तुओं का पर्याप्त उपयोग करने के बाद चित्रों का उपयोग करना चाहिए। इन सभी संकल्पनाओं को समझना जैसे व्यवहार जगत के लिए उपयोगी है, उसी तरह बुद्धि के शिक्षण के लिए भी उपयोगी है। |
# १ की संकल्पना समझना सबसे अहम है। किसी भी तर्क या वस्तु से संख्या को समझाया नहीं जा सकता है। एक वस्तु दिखाकर यह १ है ऐसा बार बार कहने से छात्रों को कभी अपने आप ही १ क्या है यह समझ में आ जाता है। जब तक १ की संकल्पना स्पष्ट न हो, तब तक आगे नहीं बढ़ना चाहिए। १ की संख्या (अंक) समझने के लिए छात्रों को १ वस्तु दिखाकर बार बार पूछना चाहिए: | # १ की संकल्पना समझना सबसे अहम है। किसी भी तर्क या वस्तु से संख्या को समझाया नहीं जा सकता है। एक वस्तु दिखाकर यह १ है ऐसा बार बार कहने से छात्रों को कभी अपने आप ही १ क्या है यह समझ में आ जाता है। जब तक १ की संकल्पना स्पष्ट न हो, तब तक आगे नहीं बढ़ना चाहिए। १ की संख्या (अंक) समझने के लिए छात्रों को १ वस्तु दिखाकर बार बार पूछना चाहिए: | ||
#* यह क्या है ? अंगुली, कितनी अंगुलियाँ है ? एक | #* यह क्या है ? अंगुली, कितनी अंगुलियाँ है ? एक | ||
Line 54: | Line 54: | ||
#* १ से ९ की संख्या (अंक) का खेल खेलते खेलते ही गणना, जोड़ एवं घटाव छात्रों को आ जाएंगे। इसके बाद क्रमशः घटाव करने पर अंत में १ बचता है। एवं उसमें से भी १ घटा दिया जाए तो कुछ नहीं बचता। इस कुछ नहीं के बदले शून्य कहना सिखना चाहिए। | #* १ से ९ की संख्या (अंक) का खेल खेलते खेलते ही गणना, जोड़ एवं घटाव छात्रों को आ जाएंगे। इसके बाद क्रमशः घटाव करने पर अंत में १ बचता है। एवं उसमें से भी १ घटा दिया जाए तो कुछ नहीं बचता। इस कुछ नहीं के बदले शून्य कहना सिखना चाहिए। | ||
#* ० यह शून्य है। एक एवं शून्य मिलाने पर १० बनता है। इस तरह शून्य के उच्चारण एवं बोलने पर अभ्यास करवाना चाहिए। | #* ० यह शून्य है। एक एवं शून्य मिलाने पर १० बनता है। इस तरह शून्य के उच्चारण एवं बोलने पर अभ्यास करवाना चाहिए। | ||
− | #* इसके बाद १०, २०, ३०, ४०, ५०, ६०, ७०, ८०, ९० की गिनती सिखाना चाहिए। यह दशक अर्थात् दहाई की संकल्पना है। १०-१० का समूह गिनने पर वह १, २, ३, ४, ५, ६, ७, ८ एवं ९ होते हैं। परंतु ये १०-१० के समूह हैं। | + | #* इसके बाद १०, २०, ३०, ४०, ५०, ६०, ७०, ८०, ९० की गिनती सिखाना चाहिए। यह दशक अर्थात् दहाई की संकल्पना है। १०-१० का समूह गिनने पर वह १, २, ३, ४, ५, ६, ७, ८ एवं ९ होते हैं। परंतु ये १०-१० के समूह हैं। अतः १ दहाई, २ दहाई, ३ दहाई, ... ९ दहाई गिना जाएगा। १ दहाई अर्थात् दस तो दिखाई देता है। इस तरह अलग-अलग वस्तु की गिनती अर्थात् इकाई की गिनती, एक दस के समूह अर्थात् दहाई की गिनती, ऐसा समझना चाहिए। |
#* १ से ९ दहाई की गिनती को पक्का करवाना चाहिए। इसके बाद दहाई, इकाई, दोनों की गिनती करवाएँ। अर्थात् दहाई, ईकाई से बनी हुई दो अंकों की संख्या। उसमें दहाई पहले गिनावाएँ एवं इकाई बाद में। यदि ३ दहाई हों तो तीस कहा जाएगा एवं चार ईकाई हो तो केवल चार कहा जाएगा। दोनों मिलाकर चौंतीस कहलाएंगे। इस प्रकार समूह एवं फुटकर वस्तु को एकसाथ गिनने पर दो अंक की संख्या अर्थात् प्रथम पचास एवं आगे जाने पर निन्यानवे (९९) तक की संख्या समझाई जा सकती है। | #* १ से ९ दहाई की गिनती को पक्का करवाना चाहिए। इसके बाद दहाई, इकाई, दोनों की गिनती करवाएँ। अर्थात् दहाई, ईकाई से बनी हुई दो अंकों की संख्या। उसमें दहाई पहले गिनावाएँ एवं इकाई बाद में। यदि ३ दहाई हों तो तीस कहा जाएगा एवं चार ईकाई हो तो केवल चार कहा जाएगा। दोनों मिलाकर चौंतीस कहलाएंगे। इस प्रकार समूह एवं फुटकर वस्तु को एकसाथ गिनने पर दो अंक की संख्या अर्थात् प्रथम पचास एवं आगे जाने पर निन्यानवे (९९) तक की संख्या समझाई जा सकती है। | ||
#* इसके बाद १०-१० के १० समूहों को मिलाकर एक बड़ा समूह बनाने पर १०० बनता है। दस के समूह की संकल्पना यदि स्पष्ट हो चुकी हो तो १०० की (शतक) की संकल्पना समझने में देर नहीं लगती है। | #* इसके बाद १०-१० के १० समूहों को मिलाकर एक बड़ा समूह बनाने पर १०० बनता है। दस के समूह की संकल्पना यदि स्पष्ट हो चुकी हो तो १०० की (शतक) की संकल्पना समझने में देर नहीं लगती है। | ||
− | #* इसके बाद तीन अंकों की संख्या एवं हजार, दस हजार इत्यादि के लिए वस्तुएँ गिनने की जरुरत नहीं रह जाती है। यहाँ इस बात का खास ख्याल रखना है कि यह सब बहुत धीरे धीरे एवं खूब धीरज रखकर करना चाहिए। मूर्त वस्तुएँ तो | + | #* इसके बाद तीन अंकों की संख्या एवं हजार, दस हजार इत्यादि के लिए वस्तुएँ गिनने की जरुरत नहीं रह जाती है। यहाँ इस बात का खास ख्याल रखना है कि यह सब बहुत धीरे धीरे एवं खूब धीरज रखकर करना चाहिए। मूर्त वस्तुएँ तो आवश्यक हैं ही। आगे की मानसिक गणना को आसान बनाने के लिए इस समय मूर्त वस्तुओं की सहायता से आधारभूत संकल्पनाओं को समझना भी अत्यंत आवश्यक है। संकल्पना समझने के क्रम में अब जोड़ एवं घटाव की बारी आती है। जोड़ अर्थात् बढ़ना एवं घटाव अर्थात् कम होना। इस बढ़ने या घटने को स्पष्ट रूप में दिखना चाहिए। |
− | #* इसके बाद क्रमिकता समझना चाहिए। वह भी कम एवं अधिक के आधार पर । अर्थात् १ से २ अधिक है, | + | #* इसके बाद क्रमिकता समझना चाहिए। वह भी कम एवं अधिक के आधार पर । अर्थात् १ से २ अधिक है, अतः १ के बाद हमेश २ ही आना चाहिए; परंतु ३ से २ कम है, अतः ३ से पहले २ आना चाहिए। जोड़ में बढ़ता हुआ क्रम एवं घटाव में घटता हुआ क्रम रहता है। इसके आधार पर २ छोटी एवं ५ बड़ी संख्या कहलाती है। एवं ९ तो उससे भी बड़ी संख्या कहलाती है। ऐसा करते करते ही बड़ी संख्या एवं छोटी संख्या परस्पर सापेक्ष संकल्पना है यह सापेक्ष शब्द के उपयोग के बिना ही समझना चाहिए। गणित का सबसे अहम भाग संकल्पना समझना ही है। |
# संकल्पना समझने का अर्थ है गणित को समझना। अब बारी आती है लिखा हुआ पढ़ने की। अब तक हम जो बोलते थे वह भाषा थी, मौखिक भाषा। अब वही बोला हुआ पढ़ना है। परंतु गणित का वाचन दो प्रकार से हो सकता है। एक अंकों में पढ़ना एवं दूसरा शब्दों में पढ़ना। उदाहरण के तौर पर अंकों में १ लिखते हैं एवं शब्दों में एक। परंतु दोनों को समान रूप में ही बोलते हैं। | # संकल्पना समझने का अर्थ है गणित को समझना। अब बारी आती है लिखा हुआ पढ़ने की। अब तक हम जो बोलते थे वह भाषा थी, मौखिक भाषा। अब वही बोला हुआ पढ़ना है। परंतु गणित का वाचन दो प्रकार से हो सकता है। एक अंकों में पढ़ना एवं दूसरा शब्दों में पढ़ना। उदाहरण के तौर पर अंकों में १ लिखते हैं एवं शब्दों में एक। परंतु दोनों को समान रूप में ही बोलते हैं। | ||
− | #* | + | #* अतः गणित पढ़ना सिखाना हो तो प्रथम अंकपरिचय ही सिखाएंगे। जैसे वर्ण पढ़ना सिखाते हैं उसी तरह अंक पढ़ना सिखाना होगा। इससे पूर्व १ अर्थात् क्या यह अच्छी तरह समझे हों तो पढ़ते समय वह समझ पक्की हो जाती है। अंक परिचय करते समय केवल परिचय पर ही ध्यान केन्द्रित करना चाहिए। उस समय अन्य कुछ भी नहीं सिखाना चाहिए। अंक, पहाड़े, जोड़-घटाव, क्रम... ये सब पढ़ना सिखाना चाहिए। पढ़ना (वाचन) सिखाते समय जो भी पढ़े उसे पूरा बोलें। |
#* उदाहरण ४ ५ २० यह पहाड़ा बोलना (वाचन करना) हो तो चार पंचे बीस ऐसा पूरा बोलें। यदि २, ३, ४ लिखा हो तो उसे दो, तीन, चार ऐसे ही पढ़ें। ५६ पढ़ना हो तो दो तरह से पढ़ सकते हैं। एक तो 'छप्पन' ही कहना चाहिए। दूसरे ‘पचास छः छप्पन' ऐसे भी पढ़ सकते हैं। जिस तरह अंक को दो तरह से बोला जाता है, उसी तरह पढ़ा भी दो तरह से ही जाता है। धीरे धीरे यह स्पष्ट होता जाएगा, एवं वाचन भी स्पष्ट होता जाएगा। तब ऐसे पचास छ छप्पन के स्थान पर मात्र छप्पन पढ़वाने का आग्रह रखना चाहिए। जोड़ भी इसी तरह पूर्ण पूर्ण रूप से पढ़ा जाता है। जैसे ५ + ३ = ८ को पांच धन तीन बराबर आठ ऐसे पढ़ते हैं। यहाँ + को धन कहते हैं वह ठीक समझ में आएगा। इस तरह अंकों के वाचन के बाद ही वही सब शब्दों में लिखकर पढ़वाना चाहिए। | #* उदाहरण ४ ५ २० यह पहाड़ा बोलना (वाचन करना) हो तो चार पंचे बीस ऐसा पूरा बोलें। यदि २, ३, ४ लिखा हो तो उसे दो, तीन, चार ऐसे ही पढ़ें। ५६ पढ़ना हो तो दो तरह से पढ़ सकते हैं। एक तो 'छप्पन' ही कहना चाहिए। दूसरे ‘पचास छः छप्पन' ऐसे भी पढ़ सकते हैं। जिस तरह अंक को दो तरह से बोला जाता है, उसी तरह पढ़ा भी दो तरह से ही जाता है। धीरे धीरे यह स्पष्ट होता जाएगा, एवं वाचन भी स्पष्ट होता जाएगा। तब ऐसे पचास छ छप्पन के स्थान पर मात्र छप्पन पढ़वाने का आग्रह रखना चाहिए। जोड़ भी इसी तरह पूर्ण पूर्ण रूप से पढ़ा जाता है। जैसे ५ + ३ = ८ को पांच धन तीन बराबर आठ ऐसे पढ़ते हैं। यहाँ + को धन कहते हैं वह ठीक समझ में आएगा। इस तरह अंकों के वाचन के बाद ही वही सब शब्दों में लिखकर पढ़वाना चाहिए। | ||
#* एक, दो, तीन... दस एक ग्यारह... चार पंचे बीस, एक और एक दो, एक धन चार बराबर पाँच, आठ ऋण तीन बराबर पांच... इत्यादि। | #* एक, दो, तीन... दस एक ग्यारह... चार पंचे बीस, एक और एक दो, एक धन चार बराबर पाँच, आठ ऋण तीन बराबर पांच... इत्यादि। | ||
Line 68: | Line 68: | ||
भाषा के समान गणित में भी जैसा पढ़ते हैं वैसा ही लिखते हैं। यदि वाचन अच्छी तरह आता हो तो लिखना जल्दी आ जाता है। | भाषा के समान गणित में भी जैसा पढ़ते हैं वैसा ही लिखते हैं। यदि वाचन अच्छी तरह आता हो तो लिखना जल्दी आ जाता है। | ||
− | लेखन के क्रम में प्रथम खड़ी, तिरछी रेखा, अर्धवृत्त, संपूर्ण वृत इत्यादि जो हम उद्योग में सीखे थे, वह बहुत ही उपयोगी बनता है। | + | लेखन के क्रम में प्रथम खड़ी, तिरछी रेखा, अर्धवृत्त, संपूर्ण वृत इत्यादि जो हम उद्योग में सीखे थे, वह बहुत ही उपयोगी बनता है। अतः उद्योग में जब तक रेखा एवं वृत्त बनाना पूरा न हो जाए तब तक भाषा एवं गणित में स्वाभाविक रूप से ही लेखन आरम्भ नहीं हो पाएगा। |
− | * लिखने के क्रम में प्रथम १ से ९ एवं ०, बस इतना ही मौलिक लेखन है। शेष सब कुछ इन दस अंकों की विविध प्रकार की व्यवस्था ही है। | + | * लिखने के क्रम में प्रथम १ से ९ एवं ०, बस इतना ही मौलिक लेखन है। शेष सब कुछ इन दस अंकों की विविध प्रकार की व्यवस्था ही है। अतः गणित का लेखन बहुत कठिन नहीं है। |
* परंतु आड़ा एवं खड़ा, सीधी रेखा में लिखना आवश्यकता है। दो अंकों की संख्या लिखी हो तो उसमें इकाई के स्थान पर इकाई एवं दहाई के स्थान पर दहाई ही आए यह आवश्यक है। जोड़घटाव के चिहन भी सवाल की सीध में ही आने चाहिए। इसके अतिरिक्त वाचन के समान ही लेखन भी दो प्रकार का होता है - अंकों में एवं शब्दों में। | * परंतु आड़ा एवं खड़ा, सीधी रेखा में लिखना आवश्यकता है। दो अंकों की संख्या लिखी हो तो उसमें इकाई के स्थान पर इकाई एवं दहाई के स्थान पर दहाई ही आए यह आवश्यक है। जोड़घटाव के चिहन भी सवाल की सीध में ही आने चाहिए। इसके अतिरिक्त वाचन के समान ही लेखन भी दो प्रकार का होता है - अंकों में एवं शब्दों में। | ||
− | * अंकों में लिखना आसान है। शब्दों में लिखते समय सावधानी रखना चाहिए। | + | * अंकों में लिखना आसान है। शब्दों में लिखते समय सावधानी रखना चाहिए। अतः अंकों में लिखना अच्छी तरह आने के बाद ही शब्दों में लिखना सिखाना चाहिए। |
* इस तरह समझ जाने के बाद उसे पक्का करने के लिए गणित के गीत, खेल, कहानियाँ, चित्र इत्यादि का विपुल मात्रा में उपयोग करना चाहिए। उदाहरण के तौर पर 'अंक खोज' नामक खेल अंक परिचय को समझाने के लिए खेलाना चाहिए। | * इस तरह समझ जाने के बाद उसे पक्का करने के लिए गणित के गीत, खेल, कहानियाँ, चित्र इत्यादि का विपुल मात्रा में उपयोग करना चाहिए। उदाहरण के तौर पर 'अंक खोज' नामक खेल अंक परिचय को समझाने के लिए खेलाना चाहिए। | ||
− | * 'चूहे की पूंछ, तोते की चोंच कितनी' गीत का उपयोग १ से १० तक की गिनती सिखाने के लिए किया जाता है। गणित विषयक गीत, तुकबंदी, खेल, कहानियाँ, चित्र इत्यादि स्वतंत्र पुस्तिका में दिए गए हैं। शिक्षक स्वयं भी मौलिक रूप से रचना कर सकते हैं। इस प्रकार पहली एवं दूसरी कक्षा में गणित का पाठ्यक्रम बहुत ही कम है। परंतु मूल समझ बनने के लिए बहुत प्रयास की | + | * 'चूहे की पूंछ, तोते की चोंच कितनी' गीत का उपयोग १ से १० तक की गिनती सिखाने के लिए किया जाता है। गणित विषयक गीत, तुकबंदी, खेल, कहानियाँ, चित्र इत्यादि स्वतंत्र पुस्तिका में दिए गए हैं। शिक्षक स्वयं भी मौलिक रूप से रचना कर सकते हैं। इस प्रकार पहली एवं दूसरी कक्षा में गणित का पाठ्यक्रम बहुत ही कम है। परंतु मूल समझ बनने के लिए बहुत प्रयास की आवश्यकता है। |
==References== | ==References== | ||
Line 79: | Line 79: | ||
[[Category:शिक्षा पाठ्यक्रम एवं निर्देशिका]] | [[Category:शिक्षा पाठ्यक्रम एवं निर्देशिका]] | ||
− | [[Category: | + | [[Category:Dharmik Jeevan Pratiman (धार्मिक जीवन प्रतिमान)]] |
− |
Latest revision as of 03:43, 16 November 2020
This article relies largely or entirely upon a single source.October 2019) ( |
उद्देश्य
- एक मात्र मनुष्य को ही बुद्धि का वरदान मिला है[1]। जीवन-व्यवहार में बुद्धि का उपयोग हर प्रसंग पर पड़ता ही है। शिक्षा के द्वारा बुद्धि का विकास अपेक्षित है। बुद्धि के विकास के लिए गणित एक बहुत ही उपयोगी विषय है।
- बुद्धि के कई आयाम हैं। जैसे परीक्षण, निरीक्षण, संश्लेषण, वर्गीकरण, तर्क, अनुमान, तुलना, निर्णय, विवेक... इत्यादि। इनमें से संश्लेषण, विश्लेषण, क्रमिकता, तर्क, तुलना इत्यादि का विकास गणित के कारण होता है। जीवन के रहस्यों को समझने में इन सभी क्षमताओं का बहुत उपयोग है।
- गणित से बुद्धि बढ़ती है एवं व्यवस्थित होती है। प्रत्यक्ष जीवन में व्यवस्थित बुद्धि का बहुत बड़ा लाभ है। अन्य विषयों को सीखने में भी यह व्यवस्थित बुद्धि उपयोगी होती है। अतः शिक्षा के प्रारंभ से ही गणित को मुख्य व महत्वपूर्ण विषय माना गया है।
आलंबन
- गणित रटकर याद रखने का विषय नहीं है और न ही लिखने या पढ़ने का विषय है। गणित समझने का विषय है। गणना करने का विषय है। इस तथ्य को भूलने के कारण ही गणित में छात्र कच्चे रहते हैं। इस स्थिति को बदलने के लिए लिखने पढ़ने के बजाए गणना करने पर एवं याद रखने के बजाए समझने पर अधिक जोर देना चाहिए।
- अतः पुस्तक एवं लेखनसामग्री की अपेक्षा यहाँ गणन क्रिया का अधिक महत्व है। प्रथम समझें, फिर गणना करें और इसके पश्चात् पढ़ें या लिखें, यह क्रम होना चाहिए।
- गणित क्रिया एवं समझ पर आधारित विषय है। इसी प्रकार उसका सीधा संबंध व्यवहार के साथ है। जिस प्रकार शब्द के अर्थ जीवन में होते हैं उसी प्रकार गणित भी जीवन से जुड़ा है। (जीवन अर्थात् व्यक्ति का जीवन नहीं अपितु समष्टि का जीवन।) जिस प्रकार शब्दों का अर्थ प्रथम मूर्त वस्तुओं की सहायता से जाना जा सकता है, उसी प्रकार गणना भी मूर्त वस्तुओं की सहायता से ही हो सकती है। ज्यों ज्यों समझ का विकास होता जाता है त्यों त्यों मानसिक गणना आती जाती है।
- गणित पूर्व में बताए गए अनुसार प्रारंभ में भले ही मूर्त वस्तुओं की सहायता से गणना सीखने का विषय हो तो भी अंत में तो मानसिक गिनती में निपुण होने का ही विषय है। किसी भी प्रकार के आलंबन के बिना व्यक्ति आसानी से जटिल समस्याओं का हल प्राप्त कर सके, जटिल समस्याओं के हल के लिए प्रयोजित संख्याकीय प्रक्रियाओं के साधनों का उपयोग कर सके, यही बुद्धिविकास है। इसके लिए मूर्त वस्तुओं की गणना अति प्रारंभिक सोपान है।
- संकल्पनाएँ (अवधारणाएँ) समझना यह बुद्धि का क्षेत्र है। गणित अवधारणाओं का विषय है। अतः संकल्पनाओं की समझ को गणित में प्राधान्य देना चाहिए; जानकारियों को नहीं। अवधारणाएँ समझने की क्षमता से ही तत्त्वज्ञान भी समझ में आता है। इन सारी बातों को ध्यान में रखकर ही गणित पढ़ना चाहिए।
पाठ्यक्रम
- याद करना (रटना) : गिनती : १ से १००, १०० से १, १ से १० तक पहाड़े, अद्धा पौना का पहाड़ा आदि ।
- गणना करना : १ से १००
- अवधारणाएँ (संकल्पनाएँ) समझना :
- द्वन्द्र : अधिक-कम, छोटा-बड़ा, लंबा-छोटा, गहरा-छिछरा, मोटा पतला, ऊँचा-नीचा, पूर्ण-अपूर्ण... इत्यादि।
- १, २ से ९, ०, १०-२०-३०... ९०, ११ से ९९, १००
- जोड : क्रमिकता; कम-अधिक, छोटी-बड़ी संख्या
- घटाव; क्रमिकता, कम-अधिक, छोटी-बड़ी संख्या
- वाचन : संख्या, पहाड़े, जोड़, घटाव, अंक, शब्द एवं संकेत
- लेखन : वाचन के समान ही।
- भौमितिक आकृतियां : वर्ग, त्रिकोण, गोल
- कालगणना : दिन, सप्ताह, पखवाड़ा, मास, वर्ष (दिन, पखवाडों एवं महीनों के नाम)
विस्तार
याद करना
गणित समझने का विषय है, रटने का नहीं ऐसा प्रारंभ में ही कहा गया है। तो फिर याद करने या रटने का तो प्रश्न ही नहीं उठता ऐसा कोई भी कह सकता है। अतः आजकल याद करने या रटने की क्रिया बहुत ही कम हो गई है, या बंद हो गई है।
परंतु गणना के कुछ साधन हैं। अंक, पहाड़े, सूत्र वगैरह साधन हैं। जरुरत पड़ने पर ये साधन यदि आसानी से प्राप्य हों तो उन्हें तुरंत उपयोग में लिया जा सकता है एवं इससे गणना करना आसान हो जाता है। पहाडे याद करना अर्थात गुणा की क्रिया को याद करना । गुणा करने की प्रक्रिया को समझना एक बात है। गुणा पुनरावर्तित जोड़ ही है यह भी समझना एक अलग बात है। परंतु आगे की गणना में तैयार गुणा ही उपयोग में लेना हो तो पहाड़े बहुत ही उपयोगी साधन है। उसे हम हमारे साथ रहनेवाला जन्मजात हमारा ही अंगभूत ऐसा Ready reckoner या Calculator भी कह सकते हैं। अतः अंक एवं पहाड़े याद करना पहली-दूसरी कक्षा में महत्वपूर्ण हो सकता है।
मनोवैज्ञानिक रूपसे देखा जाय तो छोटी आयु में स्मृति अधिक तेज होती है परंतु समझशक्ति इतनी अधिक विकसित नहीं होती है। जैसे जैसे आयु बढ़ती जाती है स्मृति शक्ति कम होती है एवं समझ शक्ति बढ़ती जाती है। अतः याद रखने की आयु में ज्यादा से ज्यादा याद कर लेना चाहिए एवं समझशक्ति के विकसित होने पर जो जो याद किया हो उसका उपयोग करके उसे समझ लेना चाहिए। समझने के समय में याद रखने या रटने का अधिक काम नहीं करना पड़ता है। यह इसका सबसे बड़ा लाभ है।
इस दृष्टि से कक्षा १ एवं २ में कंठस्थ करना एक महत्वपूर्ण मुद्दा माना गया है। वहाँ तो अपेक्षा मात्र १ से १०० तक गिनती, १ से १० एवं अद्धे के पहाड़े की ही रखी गई है। छात्र कर सकते हों एवं मातापिता का उत्साह हो तो इससे ज्यादा भी हो सकता है। कंठस्थ करते समय कोई वस्तु साथ में न रखें एवं मात्र बोलकर ही कंठस्थ करें यह अपेक्षित है।
गणना करना (गिनती करना)
गिनती करना एक स्वतंत्र क्रिया है। वह स्लेट, पेन, या पुस्तक से नहीं हो सकती। मात्र बोलने से भी नहीं हो सकती। अतः गिनती करने में इन सबका उपयोग नहीं करना चाहिए। गिनती करने के लिए गणना के लिए बहुत सारी वस्तुएँ होती हैं। उदाहरण के तौर पर कक्ष की खिड़कियाँ, दरवाजे, चौकियां, आसन, चित्र, पंखे इत्यादि। छात्र भी गिनती की वस्तु बन सकते हैं। इस प्रकार गणना सदा मूर्त वस्तुओं से ही हो सकती है।
- १ से १०० तक गिनती कंठस्थ करने के बाद ही गिनती करने की आरम्भआत करना चाहिए। प्रारंभ में १ से १० तक की संख्या गिनना चाहिए। इस गिनती का खूब अभ्यास करना चाहिए। १ से १० तक की गिनती करने के बाद क्रमशः १५, २०, २५... ऐसे ५० तक ले सकते हैं।
- ४० तक की गिनती के बाद १०-१० वस्तुओं का समूह बनाना चाहिए एवं प्रत्येक समूह को गिनवाना चाहिए। समूह की गिनती करवाते समय १०-१० का ही समूह बने इस तरह वस्तुएँ पसंद करना चाहिए। इस तरह समूह बनाते बनाते एवं गिनवाते गिनवाते ही गुणा, भाग, आदि की संकल्पना परोक्ष रूप से मस्तिष्क में बैठती जाए इस प्रकार छात्रों को गिनती करवाना चाहिए। (यहाँ गिनती करने एवं समूह बनाने का अभ्यास खूब करवाना चाहिए)
- इसके बाद समूह बनाते बनाते वस्तुओं की संख्या बढ़ती जाए एवं उनकी गिनती भी होती रहे, इस तरह वस्तुएँ लेना चाहिए। ऐसा करते-करते ही इकाई, दहाई की संकल्पना १०, २०, ३०... ५० के साथ ही साथ ११, ३५, ४७... जैसी संख्याएँ भी समझ में आती जाएँगी।
- इस तरह की गिनती का मुख्य उद्देश्य संख्या को समझना ही है। परंतु संकल्पनाओं का अनुभव उसके साथ जुड़ा ही रहता है। गणना में चित्र की अपेक्षा मूर्त वस्तओं का अधिक उपयोग करना चाहिए। गणना के समय लिखित संख्या का उपयोग बिलकुल भी नहीं करना चाहिए। क्योंकि जबतक गिनना न आ जाए तब तक वाचन सिखाना निरर्थक ही है। हमें संख्या पढ़ने एवं लिखने का मोह अधिक होता है। इस मोह से दूर रहना चाहिए।
संकल्पना समझना
- यह सबसे अहम् मुद्दा है। अतः इसे सबसे ज्यादा समय देना चाहिए। संख्या की गणना के समान ही यह भी मूर्त वस्तुओं की सहायता से ही समझना चाहिए। द्वन्द्व के परिचय के लिए एक से अधिक वस्तुओं का उपयोग करना चाहिए। प्रत्यक्ष वस्तुओं का पर्याप्त उपयोग करने के बाद चित्रों का उपयोग करना चाहिए। इन सभी संकल्पनाओं को समझना जैसे व्यवहार जगत के लिए उपयोगी है, उसी तरह बुद्धि के शिक्षण के लिए भी उपयोगी है।
- १ की संकल्पना समझना सबसे अहम है। किसी भी तर्क या वस्तु से संख्या को समझाया नहीं जा सकता है। एक वस्तु दिखाकर यह १ है ऐसा बार बार कहने से छात्रों को कभी अपने आप ही १ क्या है यह समझ में आ जाता है। जब तक १ की संकल्पना स्पष्ट न हो, तब तक आगे नहीं बढ़ना चाहिए। १ की संख्या (अंक) समझने के लिए छात्रों को १ वस्तु दिखाकर बार बार पूछना चाहिए:
- यह क्या है ? अंगुली, कितनी अंगुलियाँ है ? एक
- यह क्या है ? पेन, कितनी पेन हैं ? एक
- यह क्या है ? सिर, कितने सिर हैं ? एक
- यह क्या है ? मुठ्ठी, कितनी मुठ्ठियाँ है ? एक
- यहाँ ध्यान रहे कि १ से २ पर जाने के लिए जोड़ की क्रिया होती है। जोड़ अर्थात् बढ़ना, इकट्ठा होना, पास आना, जुड़ जाना, मिल जाना इत्यादि। ये सभी क्रियाएँ छात्रों को दिखाई देना चाहिए। छात्रो को प्रयोग के द्वारा करवाना चाहिए। एक आम यहाँ हो एवं एक आम दुकान में हो तो वे दो आम नहीं होते हैं। अपितु एक आम यहाँ पर हो और दूसरा आम कहीं से यहाँ पर लाया जाय, एवं आम बढ़ जाएँ तो जोड़ होगा। इस तरह एक में एक मिलाने पर ही दो बनता है।
- अर्थात् एक में एक का जोड़ किया जाए तो दो बनता है। एवं दो में एक का जोड़ किया जाए तो तीन बनता है। इस तरह जोड़ एवं गिनती साथसाथ चलनेवाली क्रियाएँ हैं। इतना सिखाने के लिए खूब समय लेना चाहिए। एवं खूब पुनरावर्तन एवं अभ्यास भी करवाना चाहिए।
- १ से ९ की संख्या (अंक) का खेल खेलते खेलते ही गणना, जोड़ एवं घटाव छात्रों को आ जाएंगे। इसके बाद क्रमशः घटाव करने पर अंत में १ बचता है। एवं उसमें से भी १ घटा दिया जाए तो कुछ नहीं बचता। इस कुछ नहीं के बदले शून्य कहना सिखना चाहिए।
- ० यह शून्य है। एक एवं शून्य मिलाने पर १० बनता है। इस तरह शून्य के उच्चारण एवं बोलने पर अभ्यास करवाना चाहिए।
- इसके बाद १०, २०, ३०, ४०, ५०, ६०, ७०, ८०, ९० की गिनती सिखाना चाहिए। यह दशक अर्थात् दहाई की संकल्पना है। १०-१० का समूह गिनने पर वह १, २, ३, ४, ५, ६, ७, ८ एवं ९ होते हैं। परंतु ये १०-१० के समूह हैं। अतः १ दहाई, २ दहाई, ३ दहाई, ... ९ दहाई गिना जाएगा। १ दहाई अर्थात् दस तो दिखाई देता है। इस तरह अलग-अलग वस्तु की गिनती अर्थात् इकाई की गिनती, एक दस के समूह अर्थात् दहाई की गिनती, ऐसा समझना चाहिए।
- १ से ९ दहाई की गिनती को पक्का करवाना चाहिए। इसके बाद दहाई, इकाई, दोनों की गिनती करवाएँ। अर्थात् दहाई, ईकाई से बनी हुई दो अंकों की संख्या। उसमें दहाई पहले गिनावाएँ एवं इकाई बाद में। यदि ३ दहाई हों तो तीस कहा जाएगा एवं चार ईकाई हो तो केवल चार कहा जाएगा। दोनों मिलाकर चौंतीस कहलाएंगे। इस प्रकार समूह एवं फुटकर वस्तु को एकसाथ गिनने पर दो अंक की संख्या अर्थात् प्रथम पचास एवं आगे जाने पर निन्यानवे (९९) तक की संख्या समझाई जा सकती है।
- इसके बाद १०-१० के १० समूहों को मिलाकर एक बड़ा समूह बनाने पर १०० बनता है। दस के समूह की संकल्पना यदि स्पष्ट हो चुकी हो तो १०० की (शतक) की संकल्पना समझने में देर नहीं लगती है।
- इसके बाद तीन अंकों की संख्या एवं हजार, दस हजार इत्यादि के लिए वस्तुएँ गिनने की जरुरत नहीं रह जाती है। यहाँ इस बात का खास ख्याल रखना है कि यह सब बहुत धीरे धीरे एवं खूब धीरज रखकर करना चाहिए। मूर्त वस्तुएँ तो आवश्यक हैं ही। आगे की मानसिक गणना को आसान बनाने के लिए इस समय मूर्त वस्तुओं की सहायता से आधारभूत संकल्पनाओं को समझना भी अत्यंत आवश्यक है। संकल्पना समझने के क्रम में अब जोड़ एवं घटाव की बारी आती है। जोड़ अर्थात् बढ़ना एवं घटाव अर्थात् कम होना। इस बढ़ने या घटने को स्पष्ट रूप में दिखना चाहिए।
- इसके बाद क्रमिकता समझना चाहिए। वह भी कम एवं अधिक के आधार पर । अर्थात् १ से २ अधिक है, अतः १ के बाद हमेश २ ही आना चाहिए; परंतु ३ से २ कम है, अतः ३ से पहले २ आना चाहिए। जोड़ में बढ़ता हुआ क्रम एवं घटाव में घटता हुआ क्रम रहता है। इसके आधार पर २ छोटी एवं ५ बड़ी संख्या कहलाती है। एवं ९ तो उससे भी बड़ी संख्या कहलाती है। ऐसा करते करते ही बड़ी संख्या एवं छोटी संख्या परस्पर सापेक्ष संकल्पना है यह सापेक्ष शब्द के उपयोग के बिना ही समझना चाहिए। गणित का सबसे अहम भाग संकल्पना समझना ही है।
- संकल्पना समझने का अर्थ है गणित को समझना। अब बारी आती है लिखा हुआ पढ़ने की। अब तक हम जो बोलते थे वह भाषा थी, मौखिक भाषा। अब वही बोला हुआ पढ़ना है। परंतु गणित का वाचन दो प्रकार से हो सकता है। एक अंकों में पढ़ना एवं दूसरा शब्दों में पढ़ना। उदाहरण के तौर पर अंकों में १ लिखते हैं एवं शब्दों में एक। परंतु दोनों को समान रूप में ही बोलते हैं।
- अतः गणित पढ़ना सिखाना हो तो प्रथम अंकपरिचय ही सिखाएंगे। जैसे वर्ण पढ़ना सिखाते हैं उसी तरह अंक पढ़ना सिखाना होगा। इससे पूर्व १ अर्थात् क्या यह अच्छी तरह समझे हों तो पढ़ते समय वह समझ पक्की हो जाती है। अंक परिचय करते समय केवल परिचय पर ही ध्यान केन्द्रित करना चाहिए। उस समय अन्य कुछ भी नहीं सिखाना चाहिए। अंक, पहाड़े, जोड़-घटाव, क्रम... ये सब पढ़ना सिखाना चाहिए। पढ़ना (वाचन) सिखाते समय जो भी पढ़े उसे पूरा बोलें।
- उदाहरण ४ ५ २० यह पहाड़ा बोलना (वाचन करना) हो तो चार पंचे बीस ऐसा पूरा बोलें। यदि २, ३, ४ लिखा हो तो उसे दो, तीन, चार ऐसे ही पढ़ें। ५६ पढ़ना हो तो दो तरह से पढ़ सकते हैं। एक तो 'छप्पन' ही कहना चाहिए। दूसरे ‘पचास छः छप्पन' ऐसे भी पढ़ सकते हैं। जिस तरह अंक को दो तरह से बोला जाता है, उसी तरह पढ़ा भी दो तरह से ही जाता है। धीरे धीरे यह स्पष्ट होता जाएगा, एवं वाचन भी स्पष्ट होता जाएगा। तब ऐसे पचास छ छप्पन के स्थान पर मात्र छप्पन पढ़वाने का आग्रह रखना चाहिए। जोड़ भी इसी तरह पूर्ण पूर्ण रूप से पढ़ा जाता है। जैसे ५ + ३ = ८ को पांच धन तीन बराबर आठ ऐसे पढ़ते हैं। यहाँ + को धन कहते हैं वह ठीक समझ में आएगा। इस तरह अंकों के वाचन के बाद ही वही सब शब्दों में लिखकर पढ़वाना चाहिए।
- एक, दो, तीन... दस एक ग्यारह... चार पंचे बीस, एक और एक दो, एक धन चार बराबर पाँच, आठ ऋण तीन बराबर पांच... इत्यादि।
- इस तरह अंकों एवं शब्दों में लिखा हुआ गणित स्पष्ट रूप से अच्छी तरह पढ़ना आ जाए अर्थात् गणित विषय बुद्धि में उतरे, स्पष्ट हो तो ही समझ में आएगा, और जब आएगा तभी सरल बन जायेगा।
लेखन
भाषा के समान गणित में भी जैसा पढ़ते हैं वैसा ही लिखते हैं। यदि वाचन अच्छी तरह आता हो तो लिखना जल्दी आ जाता है।
लेखन के क्रम में प्रथम खड़ी, तिरछी रेखा, अर्धवृत्त, संपूर्ण वृत इत्यादि जो हम उद्योग में सीखे थे, वह बहुत ही उपयोगी बनता है। अतः उद्योग में जब तक रेखा एवं वृत्त बनाना पूरा न हो जाए तब तक भाषा एवं गणित में स्वाभाविक रूप से ही लेखन आरम्भ नहीं हो पाएगा।
- लिखने के क्रम में प्रथम १ से ९ एवं ०, बस इतना ही मौलिक लेखन है। शेष सब कुछ इन दस अंकों की विविध प्रकार की व्यवस्था ही है। अतः गणित का लेखन बहुत कठिन नहीं है।
- परंतु आड़ा एवं खड़ा, सीधी रेखा में लिखना आवश्यकता है। दो अंकों की संख्या लिखी हो तो उसमें इकाई के स्थान पर इकाई एवं दहाई के स्थान पर दहाई ही आए यह आवश्यक है। जोड़घटाव के चिहन भी सवाल की सीध में ही आने चाहिए। इसके अतिरिक्त वाचन के समान ही लेखन भी दो प्रकार का होता है - अंकों में एवं शब्दों में।
- अंकों में लिखना आसान है। शब्दों में लिखते समय सावधानी रखना चाहिए। अतः अंकों में लिखना अच्छी तरह आने के बाद ही शब्दों में लिखना सिखाना चाहिए।
- इस तरह समझ जाने के बाद उसे पक्का करने के लिए गणित के गीत, खेल, कहानियाँ, चित्र इत्यादि का विपुल मात्रा में उपयोग करना चाहिए। उदाहरण के तौर पर 'अंक खोज' नामक खेल अंक परिचय को समझाने के लिए खेलाना चाहिए।
- 'चूहे की पूंछ, तोते की चोंच कितनी' गीत का उपयोग १ से १० तक की गिनती सिखाने के लिए किया जाता है। गणित विषयक गीत, तुकबंदी, खेल, कहानियाँ, चित्र इत्यादि स्वतंत्र पुस्तिका में दिए गए हैं। शिक्षक स्वयं भी मौलिक रूप से रचना कर सकते हैं। इस प्रकार पहली एवं दूसरी कक्षा में गणित का पाठ्यक्रम बहुत ही कम है। परंतु मूल समझ बनने के लिए बहुत प्रयास की आवश्यकता है।
References
- ↑ प्रारम्भिक पाठ्यक्रम एवं आचार्य अभिभावक निर्देशिका :अध्याय ७, प्रकाशक: पुनरुत्थान प्रकाशन सेवा ट्रस्ट, लेखिका: श्रीमती इंदुमती काटदरे